A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
分析 設$\frac{y}{x}$=k,$\frac{y}{x}$的最大值就等于連接原點和圓上的點的直線中斜率的最大值,由數(shù)形結(jié)合法,易得答案.
解答 解:設$\frac{y}{x}$=k,則y=kx表示經(jīng)過原點的直線,k為直線的斜率.
所以求$\frac{y}{x}$的最大值就等價于求同時經(jīng)過原點和圓上的點的直線中斜率的最大值.
從圖中可知,斜率取最大值時對應的直線斜率為正且與圓相切,
此時的斜率就是其傾斜角∠EOC的正切值.
易得|OC|=1,|CE|=$\frac{\sqrt{3}}{2}$,可由勾股定理求得|OE|=$\frac{1}{2}$,
于是可得到k=tan∠EOC=$\sqrt{3}$,即為$\frac{y}{x}$的最大值.
故選:D.
點評 本題考查直線與圓的位置關(guān)系,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<c<a | B. | c<b<a | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平行或相交 | B. | 相交或異面 | C. | 平行或異面 | D. | 平行、相交或異面 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com