2.設(shè)A、B、C、D是球面上的四個(gè)點(diǎn),且在同一平面內(nèi),AB=BC=CD=DA=1,球心到該平面的距離是球半徑的$\frac{\sqrt{3}}{2}$倍,則球的體積是$\frac{8\sqrt{2}π}{3}$.

分析 設(shè)出球的半徑,球心到該平面的距離是球半徑的$\frac{\sqrt{3}}{2}$倍,結(jié)合ABCD的對(duì)角線的一半,滿足勾股定理,求出R即可求球的體積.

解答 解:設(shè)球的半徑為R,由題意可得$(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{3}}{2}R)^{2}={R}^{2}$
∴R=$\sqrt{2}$,
∴球的體積是:$\frac{4π}{3}•(\sqrt{2})^{3}$=$\frac{8\sqrt{2}π}{3}$.
故答案為:$\frac{8\sqrt{2}π}{3}$.

點(diǎn)評(píng) 本題考查球的體積,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知四棱錐P-ABCD的底面是平行四邊形,E、F分別是AD、PC的中點(diǎn),EF⊥BD,2AP=2AB=AD,∠BAD=60°.
(1)求證:BD⊥面APB;
(2)若AB=PB,求二面角C-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{n}^{2}+n}{2}$,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$+(-1)nan,求數(shù)列{bn}的前n項(xiàng)和;
(3)設(shè)cn=an-8,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)P(c,$\frac{3}{2}$c)在以F(c,0)為右焦點(diǎn)的橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,斜率為l的直線m過(guò)點(diǎn)F與橢圓Γ交于A,B兩點(diǎn),且與直線l:x=4c交于點(diǎn)M,求橢圓Γ的離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)P1(-4,-5),線段P1P2的中點(diǎn)P的坐標(biāo)為(1,-2),求線段端點(diǎn)P2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)P(2,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,a,b,c是角A,B,C的對(duì)邊,且cosB=$\frac{4}{5}$,b=2,設(shè)AC邊的中線為BM,則BM的最大值為( 。
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2-2,g(x)=f(x)+2(x+1)+alnx.
(1)已知函數(shù)g(x)在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)函數(shù)h(x)=ln(1+x2)-$\frac{1}{2}$f(x)-k,討論關(guān)于x的方程h(x)=0根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角的正弦值為$\frac{1}{2}$,求銳二面角A-A1C-B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案