11.已知函數(shù)f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a的最大值為3.
(Ⅰ)求f(x)的對稱軸方程和a的值;
(Ⅱ)試討論函數(shù)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{3}$]上的單調(diào)性.

分析 (Ⅰ)由三角函數(shù)公式化簡可得f(x)=2sin(2x+$\frac{π}{6}$)+a+1,由已知最值可得a=0,解2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$可得對稱軸方程;
(Ⅱ)解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得單調(diào)遞增區(qū)間,和已知區(qū)間取交集可得單調(diào)遞增區(qū)間,同時可得單調(diào)遞減區(qū)間.

解答 解:(Ⅰ)由三角函數(shù)公式化簡可得f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a
=2$\sqrt{3}$sinxcosx+2cos2x+a=$\sqrt{3}$sin2x+cos2x+a+1=2sin(2x+$\frac{π}{6}$)+a+1,
∵函數(shù)的最大值為3,∴2+a+1=3,解得a=0,故f(x)=2sin(2x+$\frac{π}{6}$)+1,
令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$可得x=$\frac{1}{2}$kπ+$\frac{π}{6}$,故f(x)的對稱軸方程為x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z;
(Ⅱ)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
∴當k=0時,可得函數(shù)的一個單調(diào)遞增區(qū)間為[-$\frac{π}{3}$,$\frac{π}{6}$],
∴函數(shù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{3}$]上的單調(diào)遞減.

點評 本題考查三角函數(shù)恒等變換,涉及三角函數(shù)的對稱性和單調(diào)性最值,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.在直角坐標平面上,已知點A(0,2),B(0,1),D(t,0)(t>0),M為線段AD上的動點,若|AM|≤2|BM|恒成立,則實數(shù)t的取值范圍為( 。
A.$[\frac{{2\sqrt{3}}}{3},+∞)$B.$[\frac{{\sqrt{3}}}{3},+∞)$C.$(0,\frac{{2\sqrt{3}}}{3}]$D.$(0,\frac{4}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個數(shù)字相加,其和為偶數(shù)的概率等于( 。
A.$\frac{1}{2}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列前n項和Sn=(k-2)+kan,其中n∈N*,k>1且k≠2.
(I)證明:{an}是等比數(shù)列;
(Ⅱ)當{an}是遞增數(shù)列時,試確定k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的五位數(shù),其中比40000大的奇數(shù)共有120個(用數(shù)字作答.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=x(1-x),若數(shù)列{an}滿足a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,則f(a2015)+f(a2016)=(  )
A.-8B.8C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)-sin2x-ln|x|+$\frac{1}{2}$的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\\{\;}\end{array}\right.$,則目標函數(shù)z=mx+y的最大值為-2,則實數(shù)m=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為(  )
A.$[1,\frac{7}{5}]$B.$(1,\frac{7}{5}]$C.[1,2]D.(1,2]

查看答案和解析>>

同步練習冊答案