13.已知復(fù)數(shù)z1=1+i,z2=2-i,則$\frac{{{z_1}{z_2}}}{i}$=( 。
A.1-3iB.-1+3iC.1+2iD.1-2i

分析 把復(fù)數(shù)z1=1+i,z2=2-i代入$\frac{{{z_1}{z_2}}}{i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z1=1+i,z2=2-i,
∴$\frac{{{z_1}{z_2}}}{i}$=$\frac{(1+i)(2-i)}{i}=\frac{3+i}{i}=\frac{(3+i)(-i)}{-{i}^{2}}=1-3i$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=log32,b=log2$\frac{1}{3}$,c=2${\;}^{\frac{1}{3}}$,則(  )
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了鼓勵(lì)市民節(jié)約用水,太原市對(duì)已實(shí)施“一戶一表、水表出戶”的居民生活用水的收費(fèi)標(biāo)準(zhǔn)規(guī)定如下:一級(jí)水量每戶每月9立方米及以下,每立方米銷售價(jià)格為2.30元;二級(jí)水量每戶每月9立方米以上至13.5立方米,每立方米銷售價(jià)格為4.60元;三級(jí)水量每戶每月13.5立方米及以上,每立方米銷售價(jià)格為6.90元,
(1)寫出太原市居民每戶每月生活用水費(fèi)用y(單位:元)與其用水量J(單位:立方米)之間的關(guān)系式;
(2)如圖是按上述規(guī)定計(jì)算太原市居民每戶每月生活用水費(fèi)用的程序框圖,但步驟沒有全部給出,請(qǐng)將其補(bǔ)充完整(將答案寫在下列橫線上).
①x≤9②y=6.9x③y=2.3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,若b,c,a成等比數(shù)列,且a=2b,則cosA=-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且滿足bcosC=a,則△ABC的形狀是( 。
A.等邊三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=1,|$\overrightarrow b$|=$\sqrt{2}$,($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow{2a}$-$\overrightarrow b$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時(shí),f(x)=ex(1-x)
②函數(shù)有2個(gè)零點(diǎn)
③f(x)>0的解集為(-1,0)∪(1,+∞)        
④?x1,x2∈R,都有|f(x1)-f(x2)|<2,
其中正確的命題是( 。
A.①③B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.以下四個(gè)命題:
①?x0∈R,使$ln({x_0^2+1})<0$;
②若x≠kπ(k∈Z),則$sinx+\frac{1}{sinx}≥2$;
③若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題;
④函數(shù)y=x3+2ex在x=1處的切線過(0,-2)點(diǎn).
其中真命題的序號(hào)是③④(把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}為等差數(shù)列,若a1+a5+a9=5π,則cos(a2+a8)的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案