19.在△ABC中,三邊a,b,c滿足:a2-a-2b-2c=0,a+2b-2c+3=0,則下列說法中正確的是(  )
A.a>c>bB.c>a>b
C.△ABC的最小角為30°D.△ABC的最大角為120°

分析 根據(jù)條件可得b=$\frac{(a-3)(a+1)}{4}$,c=$\frac{{a}^{2}+3}{4}$,顯然c>b,假設(shè)c=$\frac{{a}^{2}+3}{4}$>a,解得 a<1或a>3,剛好符合,故最大邊為c,由余弦定理求得cosC 的值,即可得到C 的值.

解答 解:把a2-a-2b-2c=0和a+2b-2c+3=0聯(lián)立可得,b=$\frac{(a-3)(a+1)}{4}$,c=$\frac{{a}^{2}+3}{4}$,顯然c>b.
比較c與a的大。
因為b=$\frac{{a}^{2}+3}{4}$>0,解得a>3,(a<-1的情況很明顯為負數(shù)舍棄了)
假設(shè)c=$\frac{{a}^{2}+3}{4}$>a,解得 a<1或a>3,剛好符合,
所以c>a,所以最大邊為c.
由余弦定理可得 c2=a2+b2-2ab•cosC,
即 ($\frac{{a}^{2}+3}{4}$)2=a2+[$\frac{(a-3)(a+1)}{4}$]2-2a$\frac{(a-3)(a+1)}{4}$cosC,
解得cosC=-$\frac{1}{2}$,∴C=120°,
故選:D.

點評 本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,判斷最大邊為c,是解題的關(guān)鍵,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知△ABC中,a,b,c分別是三角形三個角A,B,C所對的邊,A:B:C=3:2:1,則a:b:c=2:$\sqrt{3}$:1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知tanα,tanβ是方程x2+px-q=0的兩根.
(1)用p,q表示tan(α+β);
(2)是否存在負數(shù)p,q使得sin2(α+β)+psin(α+β)cos(α+β)-qcos2(α+β)-p=2且pq=1?若存在,求出p,q的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知y=2sinωx(ω>0)在[0,1]上至少有一個最大值2,求ω的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}滿足:Sn=1-an(n∈N*),其中Sn為數(shù)列{an}的前n項和,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.a(chǎn),b為實數(shù),設(shè)M=a2+b2,N=a(b+1)+b-1,比較M與N的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.計算:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$;
(2)2${x}^{-\frac{1}{3}}$($\frac{1}{2}$${x}^{\frac{1}{3}}$-2${x}^{-\frac{2}{3}}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線l1:2x-y-5=0;直線l2:x+y-5=0.
(Ⅰ)求點P(3,0)到直線l1的距離;
(Ⅱ)直線m過點P(3,0),與直線l1、直線l2分別交與點M、N,且點P是線段MN的中點,求直線m的一般式方程; 
(Ⅲ)已知⊙Q是所有過(Ⅱ)中的點M、N的圓中周長最小的圓,求⊙Q的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=|mx|-|x-1|(m>0),若關(guān)于x的不等式f(x)<0的解集中的整數(shù)恰有3個,則實數(shù)m的取值范圍為($\frac{4}{3},\frac{3}{2}$).

查看答案和解析>>

同步練習冊答案