【題目】已知橢圓C的左、右焦點分別為、,且經(jīng)過點

I)求橢圓C的方程:

II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

【答案】III的面積取最小值.直線的方程為.

【解析】

試題分析:(I)根據(jù)題意,,求出,即可求出橢圓的方程;(II)直線的方程為,與橢圓方程聯(lián)立,求出,同理可得,進而表示出,利用基本不等式,即可得出結論.

試題解析:I)由題意,,,

∴橢圓的方程:

II的垂直平分線上,

,可得

同理可得,

由于,

所以,當且僅當,

時取等號的面積取最小值.直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,且,求的值;

(2)若,是直線上的動點,過作圓的兩條切線,,切點分別為,,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.

(1)求證:平面平面;

(2)求平面 與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶因夏長酷熱多伏旱而得名火爐,八月是重慶最熱、用電量最高的月份.下圖是沙坪壩區(qū)居民八月份用電量(單位:度)的頻率分布直方圖,其分組區(qū)間依次為:,,,,,

(1)求直方圖中的

(2)根據(jù)直方圖估計八月份用電量的眾數(shù)和中位數(shù);

(3)在用電量為,的四組用戶中,用分層抽樣的方法抽取11戶居民,則用電量在的用戶應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人種植一種經(jīng)濟作物,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455,已知當年產(chǎn)量低于350時,單位售價為20元/,若當年產(chǎn)量不低于350而低于550時,單位售價為15元/,當年產(chǎn)量不低于550時,單位售價為10元/.

1求圖中的值;

2試估計年銷售額大于5000元小于6000元的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的星級賣場”.

(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);

(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.

(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以橢圓的四個頂點為頂點的四邊形的四條邊與共有個交點,且這個交點恰好把圓周六等分.

(1)求橢圓的方程;

(2)若直線相切,且橢圓相交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.

(1)寫出年利潤(萬元)關于年產(chǎn)量千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

同步練習冊答案