10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1的短軸的一個端點B與兩焦點F1,F(xiàn)2組成三角形的周長為8+8$\sqrt{2}$,且F1B⊥F2B,求橢圓方程.

分析 當(dāng)橢圓的焦點在x軸上,設(shè)橢圓的焦點為(±c,0),由題意可得,2a+2c=8+8$\sqrt{2}$,2c=$\sqrt{2}$a,解方程可得a,c,再由a,b,c的關(guān)系,計算即可得到所求方程,同理可得焦點在y軸上的方程.

解答 解:當(dāng)橢圓的焦點在x軸上,設(shè)橢圓的焦點為(±c,0),
由題意可得,2a+2c=8+8$\sqrt{2}$,
2c=$\sqrt{2}$a,
解方程可得a=4$\sqrt{2}$,c=4,b=$\sqrt{{a}^{2}-{c}^{2}}$=4,
可得橢圓的方程為$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1;
當(dāng)橢圓的焦點在y軸上,設(shè)橢圓的焦點為(0,±c),
由題意可得2b+2c=8+8$\sqrt{2}$,
2c=$\sqrt{2}$b,
解方程可得b=4$\sqrt{2}$,c=4,a=$\sqrt{^{2}-{c}^{2}}$=4,
可得橢圓的方程為$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{32}$=1.
綜上可得,橢圓的方程為$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1或$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{32}$=1.

點評 本題考查橢圓的方程的求法,注意運用橢圓的性質(zhì)和方程思想,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱錐C-ABD的棱AB在平面α內(nèi),棱CD在平面α外,平面CAB⊥平面α,點D在平面α內(nèi)的射影為E,且滿足EA⊥EB,AC=BC=EA=EB=2,DE=2$\sqrt{2}$.
(1)求證:AE∥平面BCD;
(2)求二面角E-CD-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=-4x3+6x2+1在[0,3]上的最大值為( 。
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將下列參數(shù)方程化為普通方程.
(1)$\left\{\begin{array}{l}{x=\frac{3k}{1+{k}^{2}}}\\{y=\frac{6{k}^{2}}{1+{k}^{2}}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=1-sin2θ}\\{y=sinθ+cosθ}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=$\frac{3}{2}$,且an+1=3an-1,bn=an-$\frac{1}{2}$.
(1)求證:數(shù)列{bn}是等比數(shù)列.
(2)若不等式$\frac{_{n}+1}{_{n+1}-1}$≤m對?n∈N*恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.有四個命題:①若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$,則$\overrightarrow{p}$與$\overrightarrow{a}$、$\overrightarrow$共面;②若$\overrightarrow{p}$與$\overrightarrow{a}$、$\overrightarrow$共面,則$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$;③若$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$,則P,M,A,B共面;④若P,M,A,B共面,則$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$.其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{sin20°cos20°}{cos50°}$=( 。
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sinα+cosα=$\frac{1-\sqrt{3}}{2}$(0<α<π),則cos2α的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩個非零平面向量$\overrightarrow{a}$,$\overrightarrow$滿足:對任意λ∈R恒有|$\overrightarrow{a}$-$λ\overrightarrow$|≥|$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$|,則:
①若|$\overrightarrow$|=8,則$\overrightarrow{a}•\overrightarrow$=32;
②若$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{6}$,則$\frac{|2\overrightarrow{a}+t•\overrightarrow|}{|\overrightarrow|}$的最小值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案