8.已知集合A={x|x2-x-6≤0},B={x|x>1},則A∩B=( 。
A.[-2,3]B.(1,3]C.(1,3)D.(1,2]

分析 先解出集合A,由(x+2)(x-3)≤0得出A={x|-2≤x≤3},再確定A∩B即可.

解答 解:對于集合A,由x2-x-6≤0得,
所以,(x+2)(x-3)≤0,
解得,x∈[-2,3],
即A={x|-2≤x≤3},而B={x|x>1},
所以,A∩B={x|1<x≤3},
故答案為:B.

點評 本題主要考查了交集及其運算,涉及一元二次不等式的解法和集合的表示,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.化簡:$\frac{cos(α+2π)•tan(α+π)}{sin(α-2π)}$得(  )
A.1B.-1C.sin2αD.cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知f(x+1)定義域是[2,3],求f(x2+2)定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-2,5),|$\overrightarrow$|=2|$\overrightarrow{a}$|,若$\overrightarrow$與$\overrightarrow{a}$共線且反向,則$\overrightarrow$=(4,-10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.汽車的最佳使用年限是使年均消耗費用最低的年限(年均消耗費用=年均成本費+年均維修費),設某種汽車的購車的總費用為50000元;使用中每年的保險費、養(yǎng)路費及汽油費合計為6000元;前x年的總維修費y滿足y=ax2+bx,已知第一年的維修費為1000元,前二年總維修費為3000元,這這種汽車的最佳使用年限為(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+|x+1-2a|,其中a是實數(shù).
(Ⅰ)判斷f(x)的奇偶性,并說明理由;
(Ⅱ)當x∈[-1,1]時,f(x)的最小值為$\frac{1}{2}{a^2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.給出平面區(qū)域如圖所示,其中A(1,1),B(2,5),C(4,3)若使目標函數(shù)z=ax-y僅在點C處取得最大值,則a的取值范圍是$({\frac{2}{3},+∞})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.等差數(shù)列{an}中,a2=3,a3+a4=9,則a1a6=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計該企業(yè)的職工對該部門評分不低于80的概率;
(Ⅲ)求出本次評分的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

同步練習冊答案