A. | 16 | B. | 32 | C. | 64 | D. | 128 |
分析 令n=1,2,代入所給的式子求得a1和a2,當n≥2時,再令n=n-1得到2an-1-1=Sn-1,兩個式子相減得an=2an-1,判斷出此數(shù)列為等比數(shù)列,進而求出通項公式,則a7可求.
解答 解:令n=1,得2a1-a1=${{a}_{1}}^{2}$,即${a}_{1}={{a}_{1}}^{2}$,
∵a1≠0,∴a1=1,
令n=2,得2a2-1=1•(1+a2),解得a2=2,
當n≥2時,由2an-1=Sn得,2an-1-1=Sn-1,
兩式相減得2an-2an-1=an,即an=2an-1,
∴數(shù)列{an}是首項為1,公比為2的等比數(shù)列,
∴an=2n-1,
則${a}_{7}={2}^{6}=64$.
故選:C.
點評 本題考查了數(shù)列an與Sn之間的轉(zhuǎn)化,考查了等比關(guān)系的確定,考查了等比數(shù)列的通項公式,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)的圖象過點$(0,\frac{1}{2})$ | B. | f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上是減函數(shù) | ||
C. | f(x)的一個對稱中心是$({\frac{5π}{12},0})$ | D. | f(x)的一個對稱中心是$({\frac{π}{6},0})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {2,3} | C. | {1,2,3} | D. | {6,8,9} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com