分析 采用定義法證明,先任取x1,x2∈[-$\frac{2a}$,+∞),且x1<x2,再求f(x1)-f(x2)的差,根據(jù)定義即可證明出.
解答 解:任取x1,x2∈[-$\frac{2a}$,+∞),且x1<x2,
f(x1)=a${{x}_{1}}^{2}$+bx1+c,f(x2)=a${{x}_{2}}^{2}$+bx2+c,
f(x1)-f(x2)=a(x12-x22)+b(x1-x2)=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b]
由x1<x2,x1-x2<0,而x1>-$\frac{2a}$,x2>-$\frac{2a}$,所以x1+x2>-$\frac{a}$,
又a>0,所以a(x1+x2)>(-$\frac{a}$)•a=-b,從而a(x1+x2)+b>0,
由此可知f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函數(shù)f(x)=ax2+bx+c(a<0)在[-$\frac{2a}$,+∞)上是增函數(shù).
點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的判斷與證明,求關(guān)鍵是理解并掌握用定義法證明的規(guī)則及證明的步驟,用定義法證明其步驟是:任取,作差,整理,判號(hào),得出結(jié)論,其中判號(hào)過程易錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com