20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的兩個(gè)單位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$•$\overrightarrow$=0,則實(shí)數(shù)k的值1.

分析 將$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$代入$\overrightarrow{a}$•$\overrightarrow$=0整理即可.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的兩個(gè)單位向量,∴${\overrightarrow{{e}_{1}}}^{2}={\overrightarrow{{e}_{2}}}^{2}=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=cos$\frac{2π}{3}$=-$\frac{1}{2}$.
∵$\overrightarrow{a}$•$\overrightarrow$=0,∴($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)=k${\overrightarrow{{e}_{1}}}^{2}$-${\overrightarrow{{e}_{2}}}^{2}$+(1-k)$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$=0,∴k=1.
故答案為1.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|1≤x≤a},B={y|y=5x-6,x∈A},C={m|m=x2,x∈A}且B∩C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,已知曲線${C_1}:\left\{\begin{array}{l}x\;=cosα\\ y=si{n^2}α\end{array}\right.$(α為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(l)求曲線C1與C2的交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|a-3<x<a+3},B={x|x<-1或x>3}.
(1)若a=3,求A∪B;
(2)若A∪B=R,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$θ∈(-\frac{π}{2},0)$,且$tanθ=-\frac{3}{4}$,則cosθ=$\frac{4}{5}$;sin2θ=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.△ABC中,$cosA=\frac{{\sqrt{5}}}{5},sinB=\frac{3}{5}$,則cosC=$\frac{2\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(log2x)=log2(x+1).
(1)求f(x).
(2)用定義證明f(x)在其定義域上為增函數(shù).
(3)解不等式$f(x)<-{log_{\frac{1}{2}}}({4^x}-{2^x}+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{6}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=2-\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),T為直線l與曲線C的公共點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求點(diǎn)T的直角坐標(biāo);
(2)將曲線C上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來的$\sqrt{3}$倍(橫坐標(biāo)不變)后得到曲線W,直線m的極坐標(biāo)方程為pcos(θ-$\frac{π}{3}$)=$\sqrt{3}$,求直線m被曲線W截得的線段長(zhǎng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線l:x-ky+2$\sqrt{2}$=0與圓C:x2+y2=4交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△ABC的面積為S,求S的最大值1.

查看答案和解析>>

同步練習(xí)冊(cè)答案