2.已知函數(shù)y=sin2x的圖象為C,為了得到函數(shù)$y=sin(2x+\frac{2π}{3})$的圖象,只要把C上所有的點(  )
A.向左平行移動$\frac{2π}{3}$個單位長度B.向右平行移動$\frac{2π}{3}$個單位長度
C.向左平行移動$\frac{π}{3}$個單位長度D.向右平行移動$\frac{π}{3}$個單位長度

分析 根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.

解答 解:$y=sin(2x+\frac{2π}{3})$=sin2(x+$\frac{π}{3}$),
即為了得到函數(shù)$y=sin(2x+\frac{2π}{3})$的圖象,只要把C上所有的點向左平行移動$\frac{π}{3}$個單位長度即可,
故選:C.

點評 本題主要考查三角函數(shù)的圖象變換,利用三角函數(shù)解析式之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=x2-$\frac{a}{x}$在(1,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是(  )
A.a>-2B.a≥-2C.a≤-2D.a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在區(qū)間[2,24]內(nèi)隨機取出兩個數(shù),則這兩個數(shù)的平方和也在區(qū)間[2,24]內(nèi)的概率為$\frac{(3-\sqrt{5})π}{242}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線(3a+2)x-3y+8=0和直線3x+(a+4)y-7=0相互垂直,則a的值為( 。
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x,y滿足不等式$\left\{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}\right.$,則z=2x+y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=sin(ωx+φ)($ω>0,|φ|<\frac{π}{2}$)的部分圖象如圖所示,那么ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)點P(x,y),則“x=-3且y=1”是“點P在直線l:x-y+4=0上”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在區(qū)間[-1,1]上任取兩數(shù)s和t,則關(guān)于x的方程x2+2sx+t=0的兩根都是正數(shù)的概率為( 。
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.cos260°cos130°-sin260°sin130°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案