12.將一個(gè)半徑為3和兩個(gè)半徑為1的球完全裝入底面邊長(zhǎng)為6的正四棱柱容器中,則正四棱柱容器的高的最小值為4+$2\sqrt{2}$.

分析 由題意畫出圖形,然后通過求解直角三角形得答案.

解答 解:作出正四棱柱的對(duì)角面如圖,
∵底面邊長(zhǎng)為6,∴BC=$6\sqrt{2}$,
球O的半徑為3,球O1 的半徑為1,
則OA=$\frac{1}{2}BC-{O}_{1}N$=$3\sqrt{2}-\sqrt{2}=2\sqrt{2}$,
在Rt△OAO1中,OO1=4,
∴${O}_{1}A=\sqrt{{4}^{2}-(2\sqrt{2})^{2}}=2\sqrt{2}$,
∴正四棱柱容器的高的最小值為4+$2\sqrt{2}$.
故答案為:4+$2\sqrt{2}$.

點(diǎn)評(píng) 本題考查球的體積和表面積,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2019)的值為( 。
A.$\sqrt{2}$+1B.2+2$\sqrt{2}$C.2+$\sqrt{2}$D.-2-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}中,已知S12=72,則a1+a12=( 。
A.12B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{27}$=1有共同的漸近線,并且經(jīng)過點(diǎn)A(3,-6$\sqrt{2}$),F(xiàn)1,F(xiàn)2是雙曲線C的左、右焦點(diǎn),若點(diǎn)P在雙曲線C上,且∠F1PF2=90°,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|等于( 。
A.2$\sqrt{5}$B.$\sqrt{5}$C.2$\sqrt{10}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)常數(shù)a>0,(x2+$\frac{a}{x}$)5的二項(xiàng)展開式中x4項(xiàng)的系數(shù)為40,記等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a2+a4=6,S4=5a,則a10=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,棱BB1長(zhǎng)為$\sqrt{2}$,則二面角B1-AC-B的大小是45度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.3個(gè)老師和5個(gè)同學(xué)照相,老師不能坐在最左端,任何兩位老師不能相鄰,則不同的坐法種數(shù)是(  )
A.$A_8^8$B.$A_5^5A_3^3$C.$A_5^5A_5^3$D.$A_5^5A_8^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若向量$\overrightarrow a=(\sqrt{3}sinωx,sinωx),\overrightarrow b=(cosωx,sinωx)$,其中ω>0,記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,若函數(shù)f(x)的圖象相鄰兩條對(duì)稱軸之間的距離是$\frac{π}{2}$.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)△ABC三內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若a+b=3,$c=\sqrt{3}$,f(C)=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案