分析 由已知解得CD=1,BD=2,由D點向AB引垂線,設(shè)垂足為E,可求DE=1,BE=$\sqrt{3}$,AC=AE,由$\frac{AC}{AB}=\frac{CD}{BD}=\frac{1}{2}=\frac{AC}{AC+\sqrt{3}}$,解得:AC=$\sqrt{3}$,根據(jù)三角形面積公式即可得解.
解答 解:∵BC=3,BD=2DC,
∴可得:CD=1,BD=2,
由D點向AB引垂線,設(shè)垂足為E,
∵∠A的平分線交BC于D.則DE=1,BE=$\sqrt{B{D}^{2}-D{E}^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
∵△ACD≌△AED,可得:AC=AE,
∴$\frac{AC}{AB}=\frac{CD}{BD}=\frac{1}{2}=\frac{AC}{AC+\sqrt{3}}$,解得:AC=$\sqrt{3}$,
∴S△ABC=S△ACD+S△ABD=$\frac{1}{2}AC•CD$+$\frac{1}{2}AB•DE$=$\frac{1}{2}×\sqrt{3}×1$+$\frac{1}{2}×2\sqrt{3}×1$=$\frac{3\sqrt{3}}{2}$.
故答案為:$\frac{3\sqrt{3}}{2}$.
點評 本題主要考查了角平分線的性質(zhì),勾股定理,全等三角形的性質(zhì),三角形面積公式的應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2-i | B. | 1+2i | C. | 2+i | D. | -1+2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | [0,$\frac{\sqrt{2}}{2}$) | C. | (0,$\frac{\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com