19.下列函數(shù)的導(dǎo)數(shù).
(1)y=$\frac{sinx}{x}$;     
(2)y=(x+1)(x+2)(x+3).

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)即可.

解答 解:(1)y′=($\frac{sinx}{x}$)′=$\frac{(sinx)′•x-sinx•(x)′}{{x}^{2}}$=$\frac{xcosx-sinx}{{x}^{2}}$,
(2)y=(x+1)(x+2)(x+3)=x3+6x2+11x+6,
∴y′=3x2+12x+11x.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,如果a2=4,a4=8,那么a6=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果執(zhí)行下面的程序框圖,輸入n=251,m=15,那么輸出的結(jié)果是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,BC=3,∠C=90°,∠A的平分線交BC于D.若BD=2DC,則△ABC面積是$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列區(qū)間中,能使函數(shù)y=sinx與函數(shù)y=cosx同時單調(diào)遞減的是( 。
A.[0,$\frac{π}{3}$]B.[$\frac{2π}{3}$,$\frac{3π}{4}$]C.[$\frac{7π}{6}$,$\frac{3π}{2}$]D.[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.${(\frac{1}{81})^{-\frac{3}{4}}}$+2lg4+lg$\frac{5}{8}$=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知($\frac{1}{2}$)x=$\frac{2a-1}{5a+2}$,試求實數(shù)a的取值范圍,使得
(1)方程有解;
(2)方程有正根;
(3)方程有不小于1的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\frac{x+b}{ax-1}$(x∈R,且,a≠0.x≠$\frac{1}{a}$).
(1)若a=$\frac{1}{2}$,b=-$\frac{3}{2}$,指出f(x)與g(x)=$\frac{1}{x}$的圖象變換關(guān)系以及函數(shù)f(x)的圖象的對稱中心;
(2)證明:若ab+1≠0,則f(x)的圖象必關(guān)于直線y=x對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=-x2+2x+3,x∈[$\frac{1}{2}$,4),則該函數(shù)的值域是(-5,4].

查看答案和解析>>

同步練習(xí)冊答案