13.設(shè)全集U={x||x|<4,且x∈Z},S={-2,1,3},若∁UP⊆S,則這樣的集合P共有( 。
A.5個(gè)B.6個(gè)C.7個(gè)D.8個(gè)

分析 求出全集U,S的子集,利用列舉法,即可得出結(jié)論.

解答 解:全集U={x||x|<4,且x∈Z}={-3,-2,-1,0,1,2,3}.
UP⊆S,因?yàn)镾的子集有{-2,1}、{-2,3}、{1,3}、{-2}、{1}、{3}、{-2,1,3}、∅,
∴P可以為{-3,-1,0,2,3}、{-3,-1,0,1,2}、{-3,-2,-1,0,2}、{-3,-1,0,1,2,3}、{-3,-2,-1,0,2,3}、{-3,-2,-1,0,1,2}、{-3,-1,0,2}、{-3,-2,-1,0,1,2,3}共8個(gè).
故選:D.

點(diǎn)評(píng) 本題考查集合的關(guān)系與運(yùn)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)$({1,\frac{{\sqrt{2}}}{2}})$,離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)已知直線l1過(guò)橢圓C的右焦點(diǎn)F2交C于 M,N兩點(diǎn),點(diǎn)Q為直線l2:x=2上的點(diǎn),且F2Q⊥l1,記直線MN與直線 OQ(O為原點(diǎn))的交點(diǎn)為K,證明:MK=NK.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知,橢圓C:$\frac{{y}^{2}}{{m}^{2}}$+$\frac{{x}^{2}}{{n}^{2}}$=1(m>n>0)短軸長(zhǎng)是1,離心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F (-$\sqrt{3}$,0)的直線交橢圓C于點(diǎn)M,N,G($\sqrt{3}$,0),求△GMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列有關(guān)命題的說(shuō)法正確的是(  )
A.“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題
B.命題“若xy=0,則x=0”的否命題為“若xy=0,則x≠0”
C.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+λ(n∈N+,λ∈R).
(1)試問(wèn)數(shù)列{an+λ}是否為等比數(shù)列?若是,請(qǐng)求出數(shù)列{an}的通項(xiàng)公式;若不是,請(qǐng)說(shuō)明理由;
(2)當(dāng)λ=1時(shí),記bn=$\frac{n}{{a}_{n}+1}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若a>0,b<0,c<0,則直線ax+by+c=0必不通過(guò)(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$g(x)=\frac{1}{3}{x^3}+x-m+\frac{m}{x}(m>0)$是[1,∞]上的增函數(shù).當(dāng)實(shí)數(shù)m取最大值時(shí),若存在點(diǎn)Q,使得過(guò)Q的直線與曲線y=g(x)圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,則點(diǎn)Q的坐標(biāo)為( 。
A.(0,-3)B.(0,3)C.(0,-2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$,則目標(biāo)函數(shù)$z=\frac{y}{x+1}$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-2x-|x-1-a|-|x-2|+4.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最小值
(Ⅱ)對(duì)?x∈R,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案