分析 (1)由an+1=2an+λ(n∈N+,λ∈R),變形為且an+1+λ=2(an+λ);當(dāng)an+λ≠0時(shí),λ≠-1時(shí),$\frac{{a}_{n+1}+λ}{{a}_{n}+λ}$=2(常數(shù)),利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)當(dāng)λ=1時(shí),an=2n-1.bn=$\frac{n}{{a}_{n}+1}$=$\frac{n}{{2}^{n}}$,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)公式即可得出.
解答 解:(1)由an+1=2an+λ(n∈N+,λ∈R),變形為且an+1+λ=2(an+λ),∵a1=1,當(dāng)a1+λ=0時(shí),解得λ=-1,此時(shí)數(shù)列{an+λ}不是等比數(shù)列;
當(dāng)an+λ≠0時(shí),λ≠-1時(shí),$\frac{{a}_{n+1}+λ}{{a}_{n}+λ}$=2(常數(shù)),∴數(shù)列{an+λ}是等比數(shù)列,首項(xiàng)為1+λ,公比為2.∴an+λ=(1+λ)×2n-1.
(2)當(dāng)λ=1時(shí),an=2n-1.
bn=$\frac{n}{{a}_{n}+1}$=$\frac{n}{{2}^{n}}$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{S}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$,
∴Sn=2-$\frac{2+n}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個(gè) | B. | 6個(gè) | C. | 7個(gè) | D. | 8個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 0個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com