分析 (1)求出圓的圓心坐標(biāo),代入直線方程,即可求出k.
(2)求出圓的圓心與半徑,利用圓心到直線的距離與半徑半弦長滿足的勾股定理求解即可.
解答 解:(1)圓C:(x-1)2+(y-2)2=25,的圓心(1,2),直線l:kx-y-5k+4=0.若直線l平分圓C,
可得k-2-5k+4=0,解得k=$\frac{1}{2}$.
(2)圓C:(x-1)2+(y-2)2=25,圓心坐標(biāo)(1,2),半徑為5.
圓心到直線l:kx-y-5k+4=0的距離為:$\frac{|k-2-5k+4|}{\sqrt{1+{k}^{2}}}$=$\frac{|4k-2|}{\sqrt{1+{k}^{2}}}$.
由垂徑定理可得:${(\frac{|4k-2|}{\sqrt{1+{k}^{2}}})}^{2}+{3}^{2}={5}^{2}$,
解得k=-$\frac{3}{4}$.
點評 本題考查圓的方程的應(yīng)用,直線與圓的位置關(guān)系,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | -4 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$} | B. | {$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$} | ||
C. | {$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{3}}$-3$\overrightarrow{{e}_{1}}$} | D. | {$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1+x}{1-x}$ | B. | $\frac{x-1}{x+1}$ | C. | x | D. | -$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4對 | B. | 5對 | C. | 6對 | D. | 7對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com