15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知 sin(B+C)+sin(B-C)=2sin2C,且a=4,A=$\frac{π}{3}$,則△ABC的面積是(  )
A.$\frac{8\sqrt{3}}{3}$B.$\frac{8\sqrt{3}}{4}$C.$\frac{8}{3}$D.$\frac{8\sqrt{3}}{3}$或$\frac{8\sqrt{3}}{4}$

分析 根據(jù)兩角和差的正弦公式化簡(jiǎn)已知式子,利用正弦、余弦定理列出方程,化簡(jiǎn)求出b的值,代入三角形的面積公式求出△ABC的面積.

解答 解:由題意知,sin(B+C)+sin(B-C)=2sin2C,
則sinBcosC+cosBsinC+sinBcosC-cosBsinC=4sin2C,
2sinBcosC=4sinCcosC,
由0<C<π得cosC≠0,則sinB=2sinC,
由正弦定理得b=2c,又a=4,A=$\frac{π}{3}$,
所以由余弦定理得:a2=b2+c2-2bccosA,
解得c2=$\frac{16}{3}$,則c=$\frac{4\sqrt{3}}{3}$,即b=$\frac{8\sqrt{3}}{3}$,
所以△ABC的面積S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×\frac{8\sqrt{3}}{3}×\frac{4\sqrt{3}}{3}×\frac{\sqrt{3}}{2}$=$\frac{8\sqrt{3}}{3}$,
故選:A.

點(diǎn)評(píng) 本題考查正弦、余弦定理,兩角和差的正弦公式,以及三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程ax2-3x-1=0至少有一個(gè)負(fù)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{9}{4}$)B.(-∞,-$\frac{9}{4}$]C.[-$\frac{9}{4}$,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)化簡(jiǎn) a${\;}^{\frac{2}{3}}$•b${\;}^{\frac{1}{2}}$•(2a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{6}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$); 
(2)計(jì)算 ($\sqrt{2}$-1)0+($\frac{16}{9}$)${\;}^{\frac{1}{2}}$+8${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)$f(x)=1o{g_{\frac{1}{2}}}(2{x^2}-ax+3)$在區(qū)間[-1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-5)∪[-4,+∞)B.(-5,-4]C.(-∞,-4]D.[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\overrightarrow{a}$=(5,6),$\overrightarrow$=(sinα,cosα),已知向量且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.$\frac{5}{6}$B.-$\frac{5}{6}$C.$\frac{6}{5}$D.-$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點(diǎn)P在射線OC上,則$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值為$-\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)是定義在R上的奇函數(shù),且它是減函數(shù),若實(shí)數(shù)a,b滿足f(a)+f(b)>0,則a與b的關(guān)系是( 。
A.a+b>0B.a+b<0C.a+b=0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.△ABC中,∠A=90°,BC=2,點(diǎn)A是線段EF中點(diǎn),EF=2,則$\overrightarrow{EF}$與$\overrightarrow{BC}$的夾角為45°,則$\overrightarrow{BE}•\overrightarrow{CF}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知關(guān)于x的方程2x+3x+6x=7x,則該方程的解為x=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案