10.在△ABC中,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,且sinA•cosA=$\frac{\sqrt{3}}{4}$,則此三角形為(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

分析 由tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,推導(dǎo)出C=60°,由sinA•cosA=$\frac{\sqrt{3}}{4}$,推導(dǎo)出A=60°,從而得到△ABC為等邊三角形.

解答 解:∵tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,
即tanA+tanB=-$\sqrt{3}$(1-tanAtanB),
∴$\frac{tanA+tanB}{1-tanAtanB}$=tan(A+B)=-$\sqrt{3}$,又A與B都為三角形的內(nèi)角,
∴A+B=120°,即C=60°,
∵sinAcosA=$\frac{sinAcosA}{si{n}^{2}A+co{s}^{2}A}$=$\frac{tanA}{1+ta{n}^{2}A}$=$\frac{\sqrt{3}}{4}$,
∴tanA=$\sqrt{3}$,∴A=60°,
∴△ABC為等邊三角形.
故選:D.

點(diǎn)評 本題考查三角形形狀的判斷,是中檔題,解題時要認(rèn)真審題,注意兩角和與差的正切函數(shù)和同角三角函數(shù)關(guān)系式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.己知函數(shù)f(x)=ax2+bx+1(a>0).
(1)?x∈R,函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的單調(diào)區(qū)間;
(2)?x∈R,都有f(x)≥|x|成立,求4a-b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinA+sinC=2sinB,b=2,ac=b2,試判斷三角形形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知全集U=R,設(shè)集合A={x|-1≤x≤2},B={x|0<x<3}.求
(1)A∩B,A∪B;
(2)∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x2-ax+4在(-∞,1)上是減函數(shù),則實(shí)數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知θ為銳角,若sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,則sinθ=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.Sn為等比數(shù)列{an}的前n項(xiàng)和,若2S4=S2+2,則S6的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x=log32,求33x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=1+tcos\frac{π}{4}}\\{y=5+tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ為參數(shù)).
(1)求曲線C2的普通方程,若以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,求曲線C1的極坐標(biāo)系方程;
(2)若點(diǎn)P為曲線C2上任意一點(diǎn),求點(diǎn)P到曲線C1距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案