9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2+a4=10.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)通過(guò)設(shè)等差數(shù)列{an}的公差為d,利用等差中項(xiàng)及a2+a4=10可知a3=5,通過(guò)S4=4S2可知4a3-2d=4(2a3-3d),計(jì)算可得d=2,進(jìn)而計(jì)算即得結(jié)論;
(2)通過(guò)$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$與$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n-1}}{{a}_{n-1}}$=1-$\frac{1}{{2}^{n-1}}$作差,結(jié)合(1)整理可知bn=$\frac{2n-1}{{2}^{n}}$(n≥2),驗(yàn)證當(dāng)n=1時(shí)也成立,進(jìn)而利用錯(cuò)位相減法計(jì)算即得結(jié)論.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a2+a4=10,
∴a3=$\frac{{a}_{2}+{a}_{4}}{2}$=5,
∵S4=4S2,
∴4a3-2d=4(2a3-3d),
即20-2d=4(10-3d),解得:d=2,
∴an=a3+2(n-3)=2n-1;
(2)依題意,$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*
當(dāng)n≥2時(shí),$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n-1}}{{a}_{n-1}}$=1-$\frac{1}{{2}^{n-1}}$,
兩式相減得:$\frac{_{n}}{{a}_{n}}$=(1-$\frac{1}{{2}^{n}}$)-(1-$\frac{1}{{2}^{n-1}}$)=$\frac{1}{{2}^{n}}$,
由(1)可知bn=$\frac{2n-1}{{2}^{n}}$(n≥2),
又∵b1=(1-$\frac{1}{2}$)a1=$\frac{1}{2}$滿足上式,
∴bn=$\frac{2n-1}{{2}^{n}}$,n∈N*,
故Tn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n}}$,
$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
兩式相減得:$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$)-$\frac{2n-1}{{2}^{n+1}}$
=$\frac{3}{2}$-$\frac{1}{{2}^{n-1}}$-$\frac{2n-1}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查錯(cuò)位相減法,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.f(x)=$\left\{\begin{array}{l}{lgx,x<2}\\{{e}^{x-2},x≥2}\end{array}\right.$,則f[f(2)]=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.閱讀如圖所示的程序框圖,該程序輸出的結(jié)果是( 。
A.95B.94C.93D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=sin(2x-$\frac{π}{6}$)的單調(diào)增區(qū)間是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)M(-4,0),N(4,0),B(2,0),動(dòng)圓C與直線MN切于點(diǎn)B,過(guò)M、N與圓C相切的兩直線相交于點(diǎn)P,則P點(diǎn)的軌跡方程是( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≠±2)D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1(x≠±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,每個(gè)函數(shù)圖象都有零點(diǎn),但不能用二分法求圖中函數(shù)零點(diǎn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E為PD的中點(diǎn).
(Ⅰ)求證:CE∥平面PAB;
(Ⅱ)當(dāng)PA⊥CD,PA=AC,AB=1,PD=2$\sqrt{5}$時(shí),求二面角P-CE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.命題“?x0∈R,x02-6x0+10<0”的否定是“?x∈R,x2-6x+10≥0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)在1:15時(shí),鐘表的時(shí)針和分針?biāo)傻慕^對(duì)值較小的角是多少弧度?
(2)在12:15時(shí),鐘表的時(shí)針和分針的夾角α是多少弧度(0≤α≤2π)?

查看答案和解析>>

同步練習(xí)冊(cè)答案