20.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”.給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無數(shù)個(gè);
②正弦函數(shù)y=sinx可以同時(shí)是無數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
③函數(shù)f(x)=ln(x2+$\sqrt{{x^2}+1$)可以是某個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱圖形.
其中正確的命題是①②(寫出所有正確命題的序號(hào))

分析 過圓心的直線都可以將圓的周長和面積同時(shí)平分,故①正確;
將圓的圓心放在正弦函數(shù)y=sinx的對(duì)稱中心上,則正弦函數(shù)y=sinx是該圓的“優(yōu)美函數(shù)”;故②正確;
作函數(shù)f(x)=ln(x2+$\sqrt{{x^2}+1$)的大致圖象,從而判斷.
函數(shù)y=f(x)的圖象是中心對(duì)稱圖形,則y=f(x)是“優(yōu)美函數(shù)”,但函數(shù)y=f(x)是“優(yōu)美函數(shù)”時(shí),圖象不一定是中心對(duì)稱圖形,作圖舉反例即可.

解答 解:過圓心的直線都可以將圓的周長和面積同時(shí)平分,
故對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無數(shù)個(gè),故①正確;
將圓的圓心放在正弦函數(shù)y=sinx的對(duì)稱中心上,
則正弦函數(shù)y=sinx是該圓的“優(yōu)美函數(shù)”;
故有無數(shù)個(gè)圓成立,故②正確;
函數(shù)f(x)=ln(x2+$\sqrt{{x^2}+1$)的大致圖象如圖1,
故其不可能為圓的“優(yōu)美函數(shù)”;
函數(shù)y=f(x)的圖象是中心對(duì)稱圖形,則y=f(x)是“優(yōu)美函數(shù)”,
但函數(shù)y=f(x)是“優(yōu)美函數(shù)”時(shí),圖象不一定是中心對(duì)稱圖形,如圖2,

故答案為:①②.

點(diǎn)評(píng) 本題考查了學(xué)生的學(xué)習(xí)能力及數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,△ABC是邊長為2的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=1.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),則“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然對(duì)數(shù)的底數(shù))是“$\overrightarrow a$∥$\overrightarrow b$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}中,a3+a4+a8=12,則前9項(xiàng)和S9=( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列{an}滿足a1=1,an+1=$\frac{n+1}{n}$an+n+1,n∈N*,且前n項(xiàng)和為Sn,則$\frac{{S}_{n}}{n}$-$\frac{1}{2}$an取最大值時(shí)n的值為1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-y≤-2}\end{array}\right.$,則$\frac{2y-1}{2x+3}$的最大值為$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,且滿足Sn+1-2Sn=n+1,已知a1=1.
(1)求an的通項(xiàng)公式;
(2)若bn=n•an,求b1+b2+…+bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤10}\\{2x+y≥3}\\{0≤x≤4}\\{y≥1}\end{array}\right.$,則z=|x+y-10|的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|$\frac{x-2}{x+1}$<0},B={x||x|<a},則“a=1”是“B⊆A”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案