分析 (1)連結(jié)OE,取BC中點(diǎn)F,連結(jié)OF、EF,在等腰△EB中中,BC=x,高EF=5,由此求出四棱錐E-ABCD高EO和${S}_{正方形ABCD}={x}^{2}$,從而能把容器的容積V表示為x的函數(shù).
(2)由x=6,得到OF=3,EO=4,由此能求出主視圖的面積.
(3)由AB∥DC,得∠EBA是異面直線EB與DC所成角,再由∠EBF=∠EBA,能求出異面直線EB與DC所成角的正切值.
解答 解:(1)連結(jié)AC、BD,交于點(diǎn)O,連結(jié)OE,取BC中點(diǎn)F,連結(jié)OF、EF,
在等腰△EB中,BC=x,高EF=5,
∴四棱錐E-ABCD高EO=$\sqrt{E{F}^{2}-O{F}^{2}}$=$\sqrt{25-\frac{{x}^{2}}{4}}$=$\frac{\sqrt{100-{x}^{2}}}{2}$,
${S}_{正方形ABCD}={x}^{2}$,
∴V=$\frac{1}{3}×{S}_{正方形ABCD}×EO$=$\frac{1}{3}{x}^{2}•\frac{\sqrt{100-{x}^{2}}}{2}$=$\frac{1}{6}{x}^{2}\sqrt{100-{x}^{2}}$.
(2)∵x=6,∴OF=3,EO=$\frac{\sqrt{100-36}}{2}$=4,
∴主視圖的面積S=2S△EOF=2×$\frac{1}{2}$×EO×OF=4×3=12(cm2).
(3)∵AB∥DC,∴∠EBA是異面直線EB與DC所成角,
∵∠EBF=∠EBA,EF⊥BF,EF=5,BF=3,
∴tan∠EBA=tan∠EBF=$\frac{EF}{BF}$=$\frac{5}{3}$,
∴異面直線EB與DC所成角的正切值為$\frac{5}{3}$.
點(diǎn)評 本題考查函數(shù)式的求法,考查主視圖的面積的求法,考查異面直線所成角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(e)<f(3)<f(2) | B. | f(e)<f(2)<f(3) | C. | f(2)<f(3)<f(e) | D. | f(3)<f(2)<f(e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{6}$ | B. | $\sqrt{6}$ | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com