10.?dāng)?shù)列{an}的前n項和為Sn=n2+n
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項和,求Tn

分析 (1)利用遞推關(guān)系即可得出;
(2)利用“裂項求和”即可得出.

解答 解:(1)∵Sn=n2+n,
∴n≥2時,an=sn-sn-1=2n,
n=1時,a1=2滿足上式.
∴an=2n.
(2)${b_n}=\frac{1}{2n(2n+2)}=\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
${T_n}=\frac{1}{4}(\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{n(n+1)})=\frac{1}{4}(1-\frac{1}{n+1})=\frac{n}{4(n+1)}$.

點評 本題考查了“裂項求和”方法、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}是公差為1的等差數(shù)列,數(shù)列{bn}是公比為2的等比數(shù)列,且a1+b2=6,a4-b1=3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列$\{{a_n}+\frac{1}{b_n}\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知兩條直線l1:x+2ay-1=0,l2:2x-5y=0,且l1⊥l2,則滿足條件a的值為( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC的三邊長分別為4,5,6,則△ABC的面積為$\frac{{15\sqrt{7}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$sin\frac{α}{2}-cos\frac{α}{2}=\frac{{\sqrt{5}}}{5},α∈({\frac{π}{2},π})$,則cosα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中的假命題是( 。
A.?x∈R,2-x+1>1B.?x∈[1,2],x2-1≥0
C.?x∈R,sinx+cosx=2D.?x∈R,${x^2}+\frac{1}{{{x^2}+1}}≤1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.袋中有白球和紅球共6個,若從這只袋中任取3個球,則取出的3個球全為同色球的概率的最小值為( 。
A.$\frac{1}{3}$B.$\frac{5}{19}$C.$\frac{1}{10}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}是等差數(shù)列,且1,a2,a3,$\frac{1}{8}$成等比數(shù)列,則數(shù)列{an}的前n項和Sn=( 。
A.$\frac{n(5-n)}{8}$B.$\frac{n(7-n)}{8}$C.$\frac{n(5-n)}{4}$D.$\frac{n(7-n)}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合A、B分別是函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x-8}}$與函數(shù)y=lg(6+x-x2)的定義域,C={x|x2-4ax+3a2<0},若A∩B⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案