18.函數(shù)f(x)=2x-$\frac{1}{x}$的單調(diào)遞增區(qū)間是(-∞,0).(0,+∞).

分析 先求函數(shù)的定義域,然后求函數(shù)f(x)的導(dǎo)數(shù),令導(dǎo)函數(shù)大于0求出x的范圍與定義域求交集即可.

解答 解:∵函數(shù)f(x)=2x-$\frac{1}{x}$定義域是{x|x≠0}.
∵y'=2+$\frac{1}{{x}^{2}}$=$\frac{{x}^{2}+1}{{x}^{2}}$≥0恒成立,
函數(shù)f(x)=2x-$\frac{1}{x}$的單調(diào)遞增區(qū)間是:(-∞,0).(0,+∞).
故答案為:(-∞,0).(0,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)情況之間的關(guān)系.屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)y=x3+3ax2+(a2+3a-1)x+a在x=-1時(shí)取得極值,則a=1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求值:
(1)${(ln\sqrt{5}+1)^0}+\frac{3}{2}•{(2\frac{1}{4})^{-\frac{1}{2}}}$-lg10;
(2)2cos$\frac{π}{2}+\frac{3}{4}tan\frac{π}{4}+{cos^2}\frac{π}{6}+sin\frac{3π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.方程lgx+x=0的根所在的區(qū)間是( 。
A.$(0,\frac{1}{4})$B.$(\frac{1}{4},\frac{1}{2})$C.$(\frac{1}{2},\frac{3}{4})$D.$(\frac{3}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列說(shuō)法中正確的個(gè)數(shù)是( 。
①最大的7進(jìn)制三位數(shù)是999(7);
②110110110(2)=5036(9)
③秦九韶算法的優(yōu)點(diǎn)是減少了乘法運(yùn)算的次數(shù);
④更相減損術(shù)是計(jì)算最大公約數(shù)的方法;
⑤用歐幾里得算法計(jì)算54和78最大公約數(shù)需進(jìn)行3次除法.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(-4,0)和C(4,0),頂點(diǎn)B在雙曲線$\frac{x^2}{9}-\frac{y^2}{7}=1$上,則$\frac{sinA-sinC}{sinB}$=$±\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等差數(shù)列{an}中,已知a6+a9+a13+a16=20,則S21等于( 。
A.100B.105C.200D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.y=cos($\frac{x}{2}$-$\frac{π}{6}$)(-π≤x≤π)的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-1,1]C.[-$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知sinx+cosx=a(0$≤a≤\sqrt{2}$),則sinnx+cosnx=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n(關(guān)于a的表達(dá)式).

查看答案和解析>>

同步練習(xí)冊(cè)答案