分析 (1)由條件利用誘導(dǎo)公式、正弦定理求得cosB的值,可得sinB 的值.
(2)由條件求得a、c的值,再利用余弦定理求得b的值.
解答 解:(1)△ABC中,∵$\frac{c-4a}$=$\frac{cos(A+B)}{cosB}$,∴利用正弦定理可得$\frac{sinC-4sinA}{sinB}$=$\frac{-cosC}{cosB}$,
即 sinCcosB-4sinAcosB=-sinBcosC,即 sin(B+C)=4sinAcosB,
即 sinA=4sinAcosB,求得cosB=$\frac{1}{4}$,∴sinB=$\sqrt{{1-cos}^{2}B}$=$\frac{\sqrt{15}}{4}$.
(2)∵△ABC的面積為$\sqrt{15}$,且a=c+2,∴$\frac{1}{2}$ac•sinB=$\sqrt{15}$,
即$\frac{1}{2}$•(c+2)c•$\frac{\sqrt{15}}{4}$=$\sqrt{15}$,求得c=2,a=4,
∴b=$\sqrt{{a}^{2}{+c}^{2}-2ac•cosB}$=4.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、正弦定理、余弦定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=3,x=$\frac{π}{2}$ | B. | y=1,x=$\frac{π}{2}$+2kπ(k∈Z) | ||
C. | y=3,x=-$\frac{π}{2}$+2kπ(k∈Z) | D. | y=3,x=$\frac{π}{2}$+2kπ(k∈Z) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com