【題目】判斷下列命題中pq的什么條件.(充分不必要條件必要不充分條件,充要條件,既不充分也不必要條件)

1p:數(shù)a能被6整除,q:數(shù)a能被3整除;

2,;

3有兩個角相等,是正三角形;

4)若,,

5,.

【答案】1pq的充分不必要條件(2Pq的充分不必要條件(3pq的必要不充分條件(4pq的充要條件(5pq的既不充分也不必要條件

【解析】

判斷兩個命題是否正確,然后得結論.

解析(1)因為“數(shù)a能被6整除”能推出“數(shù)a能被3整除”,所以,

但“數(shù)a能被3整除”推不出“數(shù)a能被6整除”,如,所以,所以pq的充分不必要條件.

2)因為能推出,即;但當時,如,推不出,即,所以Pq的充分不必要條件.

3)因為“有兩個角相等”推不出“是正三角形”,因此,但“是正三角形”能推出“有兩個角相等”,即,所以pq的必要不充分條件.

4)若,則,即;若,則,即,故,所以pq的充要條件.

5)當時,推不出,知,又當,時,推不出,知,所以pq的既不充分也不必要條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某高中嘗試進行課堂改革.現(xiàn)高一有兩個成績相當?shù)陌嗉,其?/span>班級參與改革,班級沒有參與改革.經(jīng)過一段時間,對學生學習效果進行檢測,規(guī)定成績提高超過分的為進步明顯,得到如下列聯(lián)表.

進步明顯

進步不明顯

合計

班級

班級

合計

(1)是否有的把握認為成績進步是否明顯與課堂是否改革有關?

(2)按照分層抽樣的方式從班中進步明顯的學生中抽取人做進一步調查,然后從人中抽人進行座談,求這人來自不同班級的概率.

附:,當時,有的把握說事件有關.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標測試.已知隊員的測試分數(shù)與仰臥起坐

個數(shù)之間的關系如下:;測試規(guī)則:每位隊員最多進行三組測試,每組限時1分鐘,當一組測完,測試成績達到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據(jù)以往的訓練統(tǒng)計,隊員“喵兒”在一分鐘內(nèi)限時測試的頻率分布直方圖如下:

(1)計算值;

(2)以此樣本的頻率作為概率,求

①在本次達標測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達標測試中可能得分的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某市舉行的一次市質檢考試中,為了調查考試試題的有效性以及試卷的區(qū)分度,該市教研室隨機抽取了參加本次質檢考試的500名學生的數(shù)學考試成績,并將其統(tǒng)計如下表所示.

根據(jù)上表數(shù)據(jù)統(tǒng)計,可知考試成績落在之間的頻率為

(Ⅰ)求mn的值;

(Ⅱ)已知本歡質檢中的數(shù)學測試成績,其中近似為樣本的平均數(shù),近似為樣本方差,若該市有4萬考生,試估計數(shù)學成績介于分的人數(shù);以各組的區(qū)間的中點值代表該組的取值現(xiàn)按分層抽樣的方法從成績在以及之間的學生中隨機抽取12人,再從這12人中隨機抽取4人進行試卷分析,記被抽取的4人中成績在之間的人數(shù)為X,求X的分布列以及期望

參考數(shù)據(jù):若,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)討論函數(shù)的單調性;

(2)設,若存在正實數(shù),使得對任意都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點的直線的參數(shù)方程是為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,試問是否存在實數(shù),使得?若存在,求出實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)如圖,在邊長為的菱形中,,點分別是邊,的中點,.沿翻折到,連接,得到如圖的五棱錐,且

1)求證:平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個電路中有AB,C三個電器元件,每個元件可能正常,也可能失效,把這個電路是否為通路看成是一個隨機現(xiàn)象,觀察這個電路中各元件是否正常.

1)寫出試驗的樣本空間;

2)用集合表示下列事件:M=“恰好兩個元件正!保N=“電路是通路”;T=“電路是斷路”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

①函數(shù)的單調增區(qū)間是

②若函數(shù)定義域為且滿足,則它的圖象關于軸對稱;

③函數(shù)的值域為;

④函數(shù)的圖象和直線的公共點個數(shù)是,則的值可能是;

⑤若函數(shù)上有零點,則實數(shù)的取值范圍是.

其中正確的序號是_________.

查看答案和解析>>

同步練習冊答案