11.若橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的焦距為2,求橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和2$\sqrt{5}$或4.

分析 求出橢圓的長(zhǎng)軸長(zhǎng),利用橢圓的定義求解即可.

解答 解:橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的焦距為2,可得c=1,如果橢圓的焦點(diǎn)坐標(biāo)在x軸上,可得$\sqrt{m-4}$=1,
解得m=5,a=$\sqrt{5}$,橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和:2$\sqrt{5}$.
如果橢圓的焦點(diǎn)坐標(biāo)在y軸上,
可得$\sqrt{4-m}=1$,解得m=3,a=2,
橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和:4.
橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和:2$\sqrt{5}$或4
故答案為:2$\sqrt{5}$或4.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知p:A={x|x2-(a+1)x+a≤0},q:B={x|x2-3x+2≤0},若p是q的充分而不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,a=2$\sqrt{3},b=3\sqrt{2},cosC=\frac{1}{3}$,則△ABC的面積為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足z=i•(2015+2016i),則$\overline z$為(  )
A.2015+2016iB.2015-2016iC.-2016+2015iD.-2016-2015i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.當(dāng)$α∈\left\{{-1,\frac{1}{2},1,2,3}\right\}$時(shí),冪函數(shù)y=xα的圖象關(guān)于原點(diǎn)對(duì)稱的有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知角終邊上一α點(diǎn)P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{5π}{2}-α)sin(\frac{9π}{2}-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.與函數(shù)$f(x)=\sqrt{{x^2}-1},g(x)=\sqrt{\frac{x+2}{x+1}}$的積函數(shù)h(x)=$\sqrt{(x-1)(x+2)}$,(x>1或x≤-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)(a,3)和點(diǎn)(3,a)在直線x-2y=0的兩側(cè),則a的取值范圍是( 。
A.($\frac{3}{2}$,6)B.(-6,$\frac{3}{2}$)C.(-∞,-6)∪($\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4、且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5.(1)求拋物線的方程;
(Ⅱ)已知K(m,0)(m∈R,m≠0)是x軸上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)K且傾斜角為$\frac{π}{4}$的一條直線l與拋物線相交于不同的P,Q兩點(diǎn),求$\frac{\overline{OP}•\overline{OQ}+4}{m}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案