19.已知⊙O1與⊙O2的半徑分別為R、r,且它們是方程x2-9x+14=0的兩根,若⊙O1與⊙O2相切,則圓心距O1O2等于( 。
A.5B.9C.5或9D.10或18

分析 解答此題,先要求出一元二次方程的兩根,然后根據(jù)圓與圓的位置關(guān)系的判斷條件.

解答 解:∵⊙O1與⊙O2的半徑長分別為方程x2-9x+14=0的兩個根,
解方程x2-9x+14=0得x1=2,x2=7;
∵⊙O1與⊙O2相切,
∴圓心距O1O2等于7+2=9或7-2=5,
故選:C.

點評 此題綜合考查一元二次方程的解法及兩圓的位置關(guān)系的判定.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個焦點為F,若雙曲線上存在點A使△AOF為正三角形,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{3}+1$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知角α的終邊上一點的坐標為(sin$\frac{π}{6}$,cos$\frac{π}{6}$),則角α的最小正值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是定義在R上周期為2的奇函數(shù),當x∈(0,1)時,f(x)=3x-1,則f(log35)=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.4D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\{log_3}x+ax,x>0\end{array}\right.$,若f(f(-1))>4a,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,0)C.$(-∞,-\frac{1}{5})$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=loga(1+x)-loga(1-x)的圖象經(jīng)過點(-$\frac{1}{2}$,-1).
(1)求實數(shù)a;
(2)判斷函數(shù)f(x)的奇偶數(shù),并寫出f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)是奇函數(shù)的是( 。
A.f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$B.f(x)=$\frac{|x|}{x}$
C.f(x)=$\left\{\begin{array}{l}{1+x,(x≥0)}\\{1-x(x<0)}\end{array}\right.$D.f(x)=$\frac{1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.當-1≤x≤1,函數(shù)y=2x-2的值域為(  )
A.[-$\frac{3}{2}$,0]B.[0,$\frac{3}{2}$]C.[-1,0]D.[-$\frac{3}{2}$,1]

查看答案和解析>>

同步練習冊答案