分析 根據(jù)$\lim_{n→∞}\frac{3^n}{{{3^{n+1}}+{{({a+1})}^n}}}=\frac{1}{3}$得出-1<$\frac{a+1}{3}$<1,再根據(jù)$\lim_{n→∞}{({\frac{1-a}{2}})^n}$存在得出-1<$\frac{1-a}{2}$≤1,由此求出實數(shù)a的取值范圍.
解答 解:∵$\lim_{n→∞}\frac{3^n}{{{3^{n+1}}+{{({a+1})}^n}}}=\frac{1}{3}$,
∴$\underset{lim}{n→∞}$$\frac{1}{3{+(\frac{a+1}{3})}^{n}}$=$\frac{1}{3}$,
∴-1<$\frac{a+1}{3}$<1,
解得-4<a<2;
又$\lim_{n→∞}{({\frac{1-a}{2}})^n}$存在,
∴-1<$\frac{1-a}{2}$≤1,
解得-1≤a<3;
綜上,實數(shù)a的取值范圍是-1≤a<2.
故答案為:-1≤a<2.
點評 本題考查了函數(shù)的極限與運算問題,解題時應進行化簡與轉化,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值為$\frac{14}{5}$ | B. | 有最小值為$\frac{14}{5}$ | C. | 沒有最小值 | D. | 有最大值為3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | y=2x | C. | y=x3 | D. | y=lgx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com