5.已知tan(π-θ)=log2$\frac{1}{4}$.
(I)求tan(θ+$\frac{π}{4}$)的值;
(Ⅱ)求$\frac{sin2θ}{si{n}^{2}θ+sinθcosθ+cos2θ}$的值.

分析 (I)求出正切函數(shù)值,然后利用兩角和的正切函數(shù)求解即可.

解答 解:(I)tan(π-θ)=log2$\frac{1}{4}$=-2.可得tanθ=2.
則tan(θ+$\frac{π}{4}$)=$\frac{1+2}{1-1×2}$=-3.
(Ⅱ)$\frac{sin2θ}{si{n}^{2}θ+sinθcosθ+cos2θ}$=$\frac{2sinθcosθ}{2si{n}^{2}θ+sinθcosθ+{cos}^{2}θ}$=$\frac{2tanθ}{2ta{n}^{2}θ+tanθ+1}$=$\frac{4}{8+2+1}$=$\frac{4}{11}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2的直線(xiàn)與橢圓交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則離心率為 ( 。
A.$\frac{\sqrt{2}}{2}$B.2-$\sqrt{3}$C.$\sqrt{5}$-2D.$\sqrt{6}$-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(Ⅰ)求角B的大。
(Ⅱ)若△ABC的面積S=5$\sqrt{3}$,a=5,試求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{3}$sinωx-cosωx(ω>0)在區(qū)間(-π,π)與至少存在兩個(gè)極大值點(diǎn),則ω的取值范圍是($\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=lnx,則f(-e)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.己知集合A={1,2,3,4},B={x[x2-2x-3≤0},則A∩B=( 。
A.{1}B.{1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求證:函數(shù)f(x)=-2x3-x在R上是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若直線(xiàn)x+y-a=0被圓x2+y2=4截得的弦長(zhǎng)為2$\sqrt{2}$,則實(shí)數(shù)a的值為(  )
A.2$\sqrt{7}$或-2$\sqrt{7}$B.2或-2C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)雙曲線(xiàn)C經(jīng)過(guò)點(diǎn)(2,2),且與$\frac{y^2}{4}$-x2=1具有相同漸近線(xiàn),則C的方程為$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1;離心率等于$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案