分析 (1)由已知先求出極點(0,θ)為該方程的解,分別聯(lián)立方程組能求出A,B兩點的極坐標方程.
(2)由已知得$∠AOB=\frac{π}{6}$,$OA=\frac{8}{3}$,$OB=8\sqrt{3}$,由此能求出△AOB的面積.
解答 解:(1)由 $\left\{\begin{array}{l}ρ{sin^2}θ=4cosθ\\ θ=\frac{π}{3}\end{array}\right.$,得極點(0,θ)為該方程的解,但由于A不為極點
∴$\left\{\begin{array}{l}ρ=\frac{8}{3}\\ θ=\frac{π}{3}\end{array}\right.$,∴$A({\frac{8}{3},\frac{π}{3}})$,(3分)
由$\left\{\begin{array}{l}ρ{sin^2}θ=4cosθ\\ ρsinθ=4\sqrt{3}\end{array}\right.$,解得:$\left\{\begin{array}{l}ρ=8\sqrt{3}\\ θ=\frac{π}{6}\end{array}\right.$,∴$B({8\sqrt{3},\frac{π}{6}})$.(6分)
(2)由(1)得$A({\frac{8}{3},\frac{π}{3}})$,$B({8\sqrt{3},\frac{π}{6}})$
∴$∠AOB=\frac{π}{6}$,$OA=\frac{8}{3}$,$OB=8\sqrt{3}$,(8分)
∴${S_{△AOB}}=\frac{1}{2}|{OA}||{OB}|sin∠AOB$=$\frac{1}{2}×\frac{8}{3}×8\sqrt{3}×\frac{1}{2}$=$\frac{16}{3}\sqrt{3}$.(10分)
點評 本題考查點的極坐標方程的求法,考查三角形面積的求法,是基礎題,解題時要認真審題,注意極坐標、直角坐標互化公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2x+1 | B. | y=$\sqrt{x-1}$ | C. | y=$\frac{1}{|x|}$+1 | D. | y=x+$\sqrt{x-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 方案一中扇形的周長更長 | B. | 方案二中扇形的周長更長 | ||
C. | 方案一中扇形的面積更大 | D. | 方案二中扇形的面積更大 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com