4.用數(shù)學(xué)歸納法證明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,從n=k到n=k+1,等號左邊需增加的代數(shù)式為(k+1)(3k+4).

分析 分別計(jì)算當(dāng)n=k時(shí),以及n=k+1時(shí),觀察計(jì)算即可

解答 解:當(dāng)n=k時(shí),1×4+2×7+3×10+…+k(3k+1)=k(k+1)2,
則當(dāng)n=k+1時(shí),1×4+2×7+3×10+…+k(3k+1)+(k+1)(3k+4),
故從n=k到n=k+1,等號左邊需增加的代數(shù)式為(k+1)(3k+4),
故答案為:(k+1)(3k+4).

點(diǎn)評 本題考查數(shù)學(xué)歸納法,考查n=k到n=k+1成立時(shí)左邊項(xiàng)數(shù)的變化情況,考查理解與應(yīng)用的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-x2+ax(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值;
(2)當(dāng)函數(shù)f(x)在$({\frac{1}{2},2})$單調(diào)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.先后拋擲兩枚均勻的正方體骰子,觀察向上的點(diǎn)數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)所得點(diǎn)數(shù)之和是11的概率是多少?
(3)所得點(diǎn)數(shù)之和是4的倍數(shù)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{{\sqrt{3}}}{2}$,求△AOB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三角形△ABC三邊a,b,c滿足${a^2}+\frac{1}{2}ab={c^2}-{b^2}$,則角C的值為$π-arccos\frac{1}{4}$.(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中點(diǎn),O是AC與BE的交點(diǎn),將△ABE沿BE折起到圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時(shí),四棱錐A1-BCDE的體積為36$\sqrt{2}$,求點(diǎn)E到平面A1CD的距離h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個(gè)口袋內(nèi)有大小相等的1個(gè)白球和已編有不同號碼的3個(gè)黑球,從中摸出2個(gè)球,
(1)共有多少種不同的結(jié)果?
(2)摸出2個(gè)黑球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y的取值如表所示,且線性回歸方程為$\widehat{y}$=bx+$\frac{13}{2}$,則b=( 。
x234
y645
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)M(x,y)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)M到直線x=-4的距離等于點(diǎn)M到點(diǎn)D(-1,0)的距離的2倍,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)斜率為$\frac{1}{2}$的直線l與曲線C交于A、B兩個(gè)不同點(diǎn),若直線l不過點(diǎn)$P(1,\frac{3}{2})$,設(shè)直線PA、PB的斜率分別為kPA、kPB,求kPA+kPB的數(shù)值; 
(3)試問:是否存在一個(gè)定圓N,與以動(dòng)點(diǎn)M為圓心,以MD為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案