10.不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x-y≥0}\end{array}$,則z=$\frac{y-1}{x}$的取值范圍是(-∞,0).

分析 通過畫圖可知不等式組構(gòu)成的圖形為Rt△OAB,通過變形可知z即為過點(diǎn)(0,1)且與Rt△OAB相交的直線的斜率,進(jìn)而計(jì)算可得結(jié)論.

解答 解:依題意,不等式組構(gòu)成的圖形為Rt△OAB,
其中A(1,0),B(1,1),
∵z=$\frac{y-1}{x}$=$\frac{y-1}{x-0}$即為過點(diǎn)(0,1)且與Rt△OAB相交的直線的斜率,
∴z<0,
故答案為:(-∞,0).

點(diǎn)評 本題考查簡單線性規(guī)劃,考查數(shù)形結(jié)合能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知直線y=x與圓心在第二象限的圓C相切于原點(diǎn)O,且圓C與圓C′:x2+y2-2x-2y-6=0的面積相等.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使點(diǎn)Q到定點(diǎn)F(4,0)的距離等于線段OF的長?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.要從5名男生,3名女生中選出3人作為學(xué)生代表參加社區(qū)活動(dòng),且女生人數(shù)不多于男生人數(shù),那么不同的選法種數(shù)有40種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個(gè)袋中裝有1個(gè)紅球,1個(gè)黃球和兩個(gè)小立方體,兩個(gè)球除了顏色外都相同,兩個(gè)立方體中一個(gè)每一面都涂紅,另一個(gè)每個(gè)面都涂黃,除此以外它們都相同,從袋中摸出一個(gè)球和一個(gè)立方體,下面說法中錯(cuò)誤的是(  )
A.所有可能出現(xiàn)的結(jié)果有四種B.摸出2個(gè)都是紅的概率為$\frac{1}{4}$
C.摸出2個(gè)都是黃的概率為$\frac{1}{4}$D.摸出一紅一黃的概率也是$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)F到漸近線和直線$x=\frac{a^2}{c}$的距離之比為2:1,則雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=$\frac{{-{2^x}+m}}{{{2^{x+1}}+n}}$(m>0,n>0).
(1)若f(x)是奇函數(shù),求m與n的值;
(2)在(1)的條件下,求不等式$f[{f(x)}]+f(\frac{1}{4})<0$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,有一輛汽車在一條水平的公路上向正西行駛,汽車在A點(diǎn)測得公路北側(cè)山頂D的仰角為30°,汽車行駛300m后到達(dá)B點(diǎn)測得山頂D恰好在正北方,且仰角為45°,則山的高度CD為( 。
A.150$\sqrt{2}$B.150$\sqrt{3}$C.300$\sqrt{2}$D.300$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(4a-3)x+5-4a(x<1)}\\{lo{g}_{a}(x-\frac{1}{2})(x≥1)}\end{array}\right.$是R上的減函數(shù),那么a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{3}{4}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{3}{4}$]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=1,AA1=3,求:三棱錐B1一ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案