分析 (1)取AB中點(diǎn)M,連FM,GM,證明EG∥FM.然后證明EG∥平面ABF.
(2)作EN⊥AD,垂足為N,說明EN為三棱錐E-ABG的高.利用等體積法,通過${V}_{B-AEG}={V}_{E-ABG}=\frac{1}{3}{S}_{△ABG}•EN$求解即可.
解答 (1)證明:取AB中點(diǎn)M,連FM,GM. …(1分)
∵G為對(duì)角線AC的中點(diǎn),
∴GM∥AD,且GM=$\frac{1}{2}$AD,
又∵FE∥$\frac{1}{2}$AD,
∴GM∥FE且GM=FE.
∴四邊形GMFE為平行四邊形,即EG∥FM. …(4分)
又∵EG?平面ABF,F(xiàn)M?平面ABF,
∴EG∥平面ABF. …(6分)
(2)解:作EN⊥AD,垂足為N,
由平面ABCD⊥平面AFED,面ABCD∩面AFED=AD,
得EN⊥平面ABCD,即EN為三棱錐E-ABG的高.
∵在△AEF中,AF=FE,∠AFE=60°,
∴△AEF是正三角形.
∴∠AEF=60°,
由EF∥AD知∠EAD=60°,
∴EN=AE?sin60°=$\sqrt{3}$. …(10分)
∴三棱錐B-AEG的體積為${V_{B-AEG}}={V_{E-ABG}}=\frac{1}{3}{S_{△ABG}}•EN=\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{3}=\frac{{2\sqrt{3}}}{3}$. …(13分)
點(diǎn)評(píng) 本題考查直線與平面平行的判定定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}<m<1$ | B. | m>1 | C. | $m<\frac{1}{4}$ | D. | $m<\frac{1}{4}$或m>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{3}{20}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x=1,則x2≠1 | B. | 若x≠1,則x2=1 | C. | 若x≠1,則x2≠1 | D. | 若x2≠1,則x≠1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com