20.已知$\frac{2i}{1-i}+ai=b-2i(a,b∈R)$.求$\int_{\;\;a}^{\;b}{(3{x^2}}-2)dx$=22.

分析 先根據(jù)復(fù)數(shù)相等確定a,b的值,再直接運(yùn)用定積分計(jì)算公式求解.

解答 解:因?yàn)?\frac{2i}{1-i}+ai=b-2i(a,b∈R)$,
所以-1+(a+1)i=b-2i,
即b=-1且a+1=-2,解得$\left\{\begin{array}{l}{a=-3}\\{b=-1}\end{array}\right.$,所以,
$\int_{\;\;a}^{\;b}{(3{x^2}}-2)dx$=${∫}_{-3}^{-1}$(3x2-2)dx
=$(x^3-2x){|}_{-3}^{-1}$
=(1)-(-21)=22,
所以,原式的值為22,
故答案為:22.

點(diǎn)評(píng) 本題主要考查了復(fù)數(shù)的代數(shù)運(yùn)算以及定積分的求解,涉及復(fù)數(shù)的四則運(yùn)算和多項(xiàng)式函數(shù)定積分的運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知斜四棱柱ABCD-A1B1C1D1的各棱長(zhǎng)均為2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,則直線BD1與平面ABCD所成的角的正切值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{13}}{4}$C.$\frac{\sqrt{39}}{13}$D.$\frac{\sqrt{39}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若在△ABC中,∠A=30°,b=3,S△ABC=$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{21}}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$13\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義在R的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=-x2+x,則x>0時(shí),f(x)等于( 。
A.x2+xB.-x2+xC.-x2-xD.x2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知圓C:x2+y2=2與直線l:x+y+$\sqrt{2}$=0,則圓C被直線l所截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列賦值語(yǔ)句正確的是( 。
A.3=MB.a+1=MC.M-1=aD.M=a+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)集合A={x|x2-2x-8<0,x∈Z},
(1)從集合A中任取兩個(gè)元素a,b且a•b≠0,寫(xiě)出全部可能的基本結(jié)果;  
(2)求方程$\frac{x^2}{a}$+$\frac{y^2}$=1表示焦點(diǎn)在x軸上的橢圓的概率;   
(3)若A={x|x2-2x-8<0},求方程$\frac{x^2}{a}$+$\frac{y^2}$=1表示焦點(diǎn)在x軸上的橢圓的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=log2x+3的值域是( 。
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知p:x2-2x-3≤0;$q:\frac{1}{x-2}≤0$,若p且q為真,則x的取值范圍是-1≤x<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案