10.已知$x∈[\frac{π}{2},π]$,且$sin(x-\frac{π}{2})=\frac{1}{3}$,則sinx=$\frac{2\sqrt{2}}{3}$,tan(x-3π)=-2$\sqrt{2}$.

分析 根據(jù)三角函數(shù)的誘導(dǎo)公式和同角的三角函數(shù)關(guān)系,求出cosx、sinx和tanx的值.

解答 解:$x∈[\frac{π}{2},π]$,且$sin(x-\frac{π}{2})=\frac{1}{3}$,
∴cosx=-$\frac{1}{3}$,
sinx=$\sqrt{1{-cos}^{2}x}$=$\sqrt{1{-(-\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$,
tan(x-3π)=tanx=$\frac{sinx}{cosx}$=-2$\sqrt{2}$.
故答案為:$\frac{2\sqrt{2}}{3}$,-2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的誘導(dǎo)公式和同角的三角函數(shù)關(guān)系的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知角α與β關(guān)于y=x軸對(duì)稱,則α與β的關(guān)系為$α+β=2kπ+\frac{π}{2},k∈Z$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)集合M是實(shí)數(shù)集R的一個(gè)子集,如果點(diǎn)x0∈R滿足:對(duì)任意?>0,都存在x∈M,使得0<|x-x0|<?,稱x0為集合M的一個(gè)“聚點(diǎn)”.若由集合:
①有理數(shù)集;
②無(wú)理數(shù)集;
③{sin$\frac{π}{n+1}$|n∈N*};
④{$\frac{n}{n+1}$|n∈N*}
其中以0為“聚點(diǎn)”的集合是①②③.(寫出所有符合題意的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線bx+ay+2=0與曲線y=x3-1在點(diǎn)P(1,0)處的切線平行,則$\frac{a}$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)bn=n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),且($\overrightarrow$-λ$\overrightarrow{a}$)⊥$\overrightarrow{a}$,則實(shí)數(shù)λ的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,已知sinB=2cosCsinA,則△ABC的形狀是( 。
A.等邊三角形B.等腰直角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)命題p:函數(shù)f(x)=lg(ax2-x+$\frac{a}{16}$)的定義域?yàn)镽;命題q:x-x2<a對(duì)一切的實(shí)數(shù)x恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\frac{{\sqrt{1-x}}}{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,0)∪(0,1]B.(0,1]C.(-∞,1]D.(-∞,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案