20.函數(shù)$y=\frac{{\sqrt{1-x}}}{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,0)∪(0,1]B.(0,1]C.(-∞,1]D.(-∞,0)∪(0,1)

分析 根據(jù)函數(shù)y的解析式,列出使解析式有意義的不等式組$\left\{\begin{array}{l}{1-x≥0}\\{x≠0}\end{array}\right.$,求出解集即可.

解答 解:∵函數(shù)$y=\frac{{\sqrt{1-x}}}{x}$,
∴$\left\{\begin{array}{l}{1-x≥0}\\{x≠0}\end{array}\right.$,
解得x≤1且x≠0;
∴函數(shù)y的定義域?yàn)椋?∞,0)∪(0,1].
故選:A.

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$x∈[\frac{π}{2},π]$,且$sin(x-\frac{π}{2})=\frac{1}{3}$,則sinx=$\frac{2\sqrt{2}}{3}$,tan(x-3π)=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=f(x)與函數(shù)y=g(x) 互為反函數(shù),且f(x)=2x,則函數(shù)y=g(x2-1)的定義域是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知變量x,y滿足$\left\{{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}}\right.$,則$\frac{x+y+3}{x+2}$的取值范圍是(  )
A.$[{2,\frac{5}{2}}]$B.$[{\frac{5}{4},\frac{5}{2}}]$C.$[{\frac{4}{5},\frac{5}{2}}]$D.$[{\frac{5}{4},2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.集合A={0,2,a},B={1,a},若A∪B={0,1,2,4},則a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=x+$\frac{a}{x}$有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在$({0,\sqrt{a}}]$上是減函數(shù),在$[{\sqrt{a},+∞})$上是增函數(shù).
(1)如果函數(shù)y=x+$\frac{3^b}{x}$(x>0)在(0,3]上是減函數(shù),在[3,+∞)上是增函數(shù),求b的值;
(2)設(shè)常數(shù)c∈[1,4],求函數(shù)f(x)=x+$\frac{c}{x}$(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=aln(x-a)-$\frac{1}{2}$x2+x(a<0).
(1)當(dāng)a=-2時(shí),求f(x)在[-$\frac{3}{2}$,2]上的最小值(參考數(shù)據(jù):ln2=0.6931);
(2)若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=|$\frac{3}{4}$-$\frac{1}{2}$x|-|$\frac{5}{4}$+$\frac{1}{2}$x|
(Ⅰ)關(guān)于x的不等式f(x)≥a2-3a恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.三棱錐P-ABC三條側(cè)棱兩兩垂直,三個(gè)側(cè)面面積分別為$\frac{{\sqrt{2}}}{2}$,$\frac{{\sqrt{3}}}{2}$,$\frac{{\sqrt{6}}}{2}$,則該三棱錐的外接球表面積為6π.

查看答案和解析>>

同步練習(xí)冊(cè)答案