【題目】已知四棱錐的底面是菱形,,底面,是上的任意一點.
(1)求證:平面平面;
(2)設,是否存在點使平面與平面所成的銳二面角的大小為?如果存在,求出點的位置,如果不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】為選拔,兩名選手參加某項比賽,在選拔測試期間,測試成績大于或等于80分評價為“優(yōu)秀”等級,他們參加選拔的5次測試成績(滿分100分)記錄如下:
(1)從的成績中各隨機抽取一個,求選手測試成績?yōu)?/span>“優(yōu)秀”的概率;
(2)從、兩人測試成績?yōu)?/span>“優(yōu)秀”的成績中各隨機抽取一個,求的成績比低的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線與拋物線交于,兩點,且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4.
(1)求拋物線的方程;
(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點到其準線的距離為.
(1)求拋物線的方程;
(2)設直線與拋物線相交于兩點,問拋物線上是否存在點,使得是正三角形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右頂點為,左焦點為,離心率,過點的直線與橢圓交于另一個點,且點在軸上的射影恰好為點,若.
(1)求橢圓的標準方程;
(2)過圓上任意一點作圓的切線與橢圓交于,兩點,以為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右頂點為,左焦點為,離心率,過點的直線與橢圓交于另一個點,且點在軸上的射影恰好為點,若.
(1)求橢圓的標準方程;
(2)過圓上任意一點作圓的切線與橢圓交于,兩點,以為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0),其右焦點為F(1,0),離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F作傾斜角為α的直線l,與橢圓C交于P,Q兩點.
(ⅰ)當時,求△OPQ(O為坐標原點)的面積;
(ⅱ)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90,,M是線段AE上的動點.
(1)試確定點M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com