10.已知函數(shù)f(x)=Asin(ωx+φ) $(A>0,ω>0,|φ|<\frac{π}{2})$的最小正周期為2,且當x=$\frac{1}{3}$時,f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式.
(2)在閉區(qū)間[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)圖象的對稱軸?如果存在,求出對稱軸方程;如果不存在,說明理由.

分析 (1)根據(jù)三角函數(shù)的周期性,最值性,求出A,ω和φ的值的值即可求f(x)的解析式;(2)求出函數(shù)的對稱軸,解不等式即可.

解答 解:(1)∵函數(shù)的最小正周期為2,
∴$\frac{2π}{ω}$=2,即ω=π,
∵當x=$\frac{1}{3}$時,f(x)的最大值為2,
∴A=2,
此時f(x)=2sin(πx+φ),
且f($\frac{1}{3}$)=2sin(π×$\frac{1}{3}$+φ)=2,
即sin($\frac{1}{3}$π+φ)=1,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
則f(x)=2sin(πx+2kπ+$\frac{π}{6}$)=2sin(πx+$\frac{π}{6}$).
(2)由πx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
得x=k+$\frac{1}{3}$,即函數(shù)的對稱軸為x=k+$\frac{1}{3}$,
由$\frac{21}{4}$≤k+$\frac{1}{3}$≤$\frac{23}{4}$,
即$\frac{21}{4}$-$\frac{1}{3}$≤k≤$\frac{23}{4}$-$\frac{1}{3}$,
即$\frac{59}{12}$≤k≤$\frac{65}{12}$,
∵k∈Z,
∴k=5,
故在閉區(qū)間[$\frac{21}{4}$,$\frac{23}{4}$]上是存在f(x)的對稱軸,
其方程是x=$\frac{16}{3}$.

點評 本題主要考查三角函數(shù)解析式的求解以及三角函數(shù)對稱軸的求解,要求熟練掌握三角函數(shù)的圖象和性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{2}}$)∪(${\frac{1}{3}$,+∞),則ab等于24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=x-2lnx的極值點為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC中,A,B,C的對邊分別為a,b,c,且($\overrightarrow{AB}$)2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc對任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在數(shù)列{an}中,a1=1,an+1=2an+3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an+3,求數(shù)列{nbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的內(nèi)角B滿足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\vec b$且$\overrightarrow a,\vec b$滿足:$\overrightarrow{a}$•$\overrightarrow$=-9,$|{\overrightarrow a}|=3,|{\vec b}$|=5,θ為$\overrightarrow{a}$與$\overrightarrow$的夾角.
(Ⅰ)求∠B;
(Ⅱ)求sin(B+C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)實數(shù)x∈R,則y=x+$\frac{1}{x+1}$的值域為(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{m^2}$)emx,其中m≠0.
(1)討論f(x)的單調(diào)性;
(2)若g(x)=f(x)-$\frac{1}{m}$x-5恰有兩個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.經(jīng)過1小時,時針旋轉(zhuǎn)的角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步練習冊答案