18.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為正半軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=\frac{1}{2}+at}\end{array}\right.$(t為參數(shù),a為常數(shù)).
(1)求直線l普通方程與圓C的直角坐標(biāo)方程;
(2)若直線l分圓C所得的兩弧長度之比為1:2,求實(shí)數(shù)a的值.

分析 (1)利用極坐標(biāo)公式,把極坐標(biāo)方程化為普通方程,消去參數(shù)t,把參數(shù)方程化為普通方程;
(2)根據(jù)題意,得出直線l被圓C截得的弦所對的圓心角為120°,圓心C到直線l的距離d=$\frac{1}{2}$r,由此列出方程求出a的值.

解答 解:(1)圓C的極坐標(biāo)方程ρ=4cosθ-2sinθ可化為ρ2=4ρcosθ-2ρsinθ,
利用極坐標(biāo)公式,化為普通方程是x2+y2=4x-2y,
即(x-2)2+(y+1)2=5;
直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=\frac{1}{2}+at}\end{array}\right.$,
消去參數(shù)t,化為普通方程是y=$\frac{1}{2}$-ax;
(2)圓C的方程為(x-2)2+(y+1)2=5,圓心C為(2,-1),半徑r=$\sqrt{5}$,
直線l的方程為y=$\frac{1}{2}$-ax,即ax+y-$\frac{1}{2}$=0,
直線l將圓C分成弧長之比為1:2的兩段圓弧,
∴直線l被圓截得的弦所對的圓心角為120°,
∴圓心C到直線l的距離d=$\frac{1}{2}$r=$\frac{\sqrt{5}}{2}$,
即$\frac{|2a-1-\frac{1}{2}|}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{5}}{2}$,
整理得11a2-24a+4=0,
解得a=2或a=$\frac{2}{11}$.

點(diǎn)評 本題考查了參數(shù)方程與極坐標(biāo)的應(yīng)用問題,也考查了直線與圓的應(yīng)用問題,由題意得出圓心C到直線l的距離d等于半徑r的一半是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知Sn是數(shù)列{an}的前n項(xiàng)和,向量$\overrightarrow a=({a_n}-1,-2),\overrightarrow b=(4,{S_n})$滿足$\overrightarrow a⊥\overrightarrow b$,則a2015=22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列命題中,
①方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲線C可能為圓;
②$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件;
③一個(gè)命題的逆命題為真,它的否命題也一定為真;
④“9<k<15”是“方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示橢圓”的充要條件.
⑤設(shè)P是以F1、F2為焦點(diǎn)的雙曲線一點(diǎn),且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,若△PF1F2的面積為9,則雙曲線的虛軸長為6;其中真命題的序號是①③⑤(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有下列敘述:
①y=x2-2|x|-3的遞增區(qū)間為[0,+∞);
②函數(shù)f(x)的定義域?yàn)镽,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=$\frac{3}{4}$;
③函數(shù)y=f(x)是R上的偶函數(shù),對?x∈R,都有f(x+6)=f(x)+f(3)成立,當(dāng)x1、x2∈[0,3]且x1≠x2時(shí),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則函數(shù)x=-3是函數(shù)y=f(x)圖象的一條對稱軸;
④已知函數(shù)f(x)=x|x|,若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)成立,則實(shí)數(shù)t的取值范圍是[$\sqrt{2}$,+∞).
其中所有正確敘述的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.動直線l與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第一象限,直線l1過原點(diǎn)且與l垂直,則P點(diǎn)到直線l1的距離的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC中的三個(gè)頂點(diǎn)坐標(biāo)分別為A(4,6),B(-2,0),C(0,-2),若圓x2+y2=r2上的所有點(diǎn)都在△ABC內(nèi)(包括邊界),則該圓的面積的最大值是( 。
A.B.$\frac{4}{5}$πC.$\sqrt{2}$πD.$\frac{2\sqrt{2}}{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的奇函數(shù)f(x)在(-∞,-1)上是單調(diào)減函數(shù),則f(0),f(-3)+f(2)的大小關(guān)系是( 。
A.f(0)<f(-3)+f(2)B.f(0)=f(-3)+f(2)C.f(0)>f(-3)+f(2)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在空間四邊形ABCD中,E,F(xiàn),G分別在棱AB,BC,CD上(與頂點(diǎn)不重合).
(1)若AC∥平面EFG,且BD∥平面EFG,$\frac{BE}{AE}=\frac{3}{4}$,求$\frac{FG}{BD}$;
(2)若E,F(xiàn),G分別是棱AB,BC,CD的中點(diǎn),試分析直線AC,BD與平面EFG的關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=2sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{3}$cos$\frac{x}{2}$的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案