11.已知函數(shù)y=f(x),x∈[1,2]的圖象為一線段,若1<a<2,則f(a)等于(  )
A.(a-1)f(1)+(2-a)f(2)B.(2-a)f(1)+(a-1)f(2)C.(2-a)f(1)+(1-a)f(2)D.(1-a)f(1)+(2-a)f(2)

分析 由已知條件,作出圖象,利用數(shù)形結(jié)合思想能求出結(jié)果.

解答 解:∵函數(shù)y=f(x),x∈[1,2]的圖象為一線段,1<a<2,
∴如圖,h=$\frac{a-1}{2-1}[f(2)-f(1)]$,
f(a)=f(1)+h=f(1)+$\frac{a-1}{2-1}[f(2)-f(1)]$
=f(1)+(a-1)[f(2)-f(1)]
=f(1)+(a-1)f(2)-(a-1)f(1)
=(2-a)f(1)+(a-1)f(2).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=3t+a}\end{array}\right.$,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l過點(diǎn)(2,3),求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)g(x)=$\frac{1}{cosθ•x}$+lnx在[1,+∞)上為增函數(shù),且$θ∈[0,\frac{π}{2})$,f(x)=mx-$\frac{m-1}{x}$-lnx,m∈R.
(1)求θ的取值范圍;
(2)若h(x)=f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(3)若在[1,e]上至少存在一個(gè)x0,使得h(x0)>$\frac{2e}{x_0}$成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列四個(gè)結(jié)論:
(1)若x,y∈R,則“x=y”是“xy≥($\frac{x+y}{2}$)2”的充要條件
(2)設(shè)某大學(xué)的女生體重y(kg)與身高x(cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的線性回歸方程為y=0.85x-85.71,則若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg;
(3)為調(diào)查中學(xué)生近視情況,測得某校男生150名中有80名近視,在140名女生中有70名近視.在檢驗(yàn)這些學(xué)生眼睛近視是否與性別有關(guān)時(shí),應(yīng)該用獨(dú)立性檢驗(yàn)最有說服力;
(4)已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21
其中正確結(jié)論的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在直角三角形ABC中,∠ACB=90°,AC=BC=1,點(diǎn)P是斜邊AB上的一個(gè)三等分點(diǎn),則$\overrightarrow{CP}$•$\overrightarrow{CB}$+$\overrightarrow{CP}$•$\overrightarrow{CA}$=(  )
A.1B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.以下四個(gè)命題.:
①若$\underset{lim}{n→∞}$an存在,則$\underset{lim}{n→∞}$an2也存在;
②若$\underset{lim}{n→∞}$|an|存在,則$\underset{lim}{n→∞}$an也存在;
③若$\underset{lim}{n→∞}$an存在,則$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{a}_{n}+1}$也存在.
④若$\underset{lim}{n→∞}$(an-bn),$\underset{lim}{n→∞}$(an+bn)存在,則$\underset{lim}{n→∞}$an與$\underset{lim}{n→∞}$bn都存在;
其中假命題的個(gè)數(shù)為 (  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)A(2,0),點(diǎn)B(-2,0),直線l:(λ+3)x+(λ-1)y-4λ=0(其中λ∈R).
(1)求直線l所經(jīng)過的定點(diǎn)P的坐標(biāo);
(2)若直線l與線段AB有公共點(diǎn),求λ的取值范圍;
(3)若分別過A,B且斜率為$\sqrt{3}$的兩條平行直線截直線l所得線段的長為$4\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin2x+2,cosx),$\overrightarrow{n}$=(1,2cosx),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最小正周期與[0,2π]上函數(shù)的單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若A=$\frac{π}{3}$,b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若A={1,3,5,7},B={2,4,6},C={(x,y)|x∈A,y∈B},列出C中的所有元素.

查看答案和解析>>

同步練習(xí)冊答案