17.若實數(shù)x>0,則1-x-$\frac{4}{x}$的最大值是-3.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,∴x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=2時取等號,
∴1-x-$\frac{4}{x}$≤1-4=-3,
∴1-x-$\frac{4}{x}$的最大值是-3.
故答案為-3.

點評 本題考查基本不等式求最值,考查運算能力,屬基礎(chǔ)知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項為Sn,且Sn=$\frac{1}{4}$(an+1)2對于任意n∈N*恒成立.
(1)求{an}的通項公式;
(2)若an>0,設(shè)cn=$\frac{{a}_{n}}{{2}^{n}}$,數(shù)列{cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求經(jīng)過點A(3,2),B(-2,0)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(x+$\frac{π}{3}$).
(I)求函數(shù)y=f(x)的周期和單調(diào)遞增區(qū)間;
(Ⅱ)畫出y=f(x)在區(qū)間[-$\frac{5π}{6}$,$\frac{7π}{6}$]上的圖象,并求y=f(x)在[-$\frac{2π}{3}$,$\frac{π}{3}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知關(guān)于x的方程x2+ax-a=0有兩個不等的實數(shù)根,則( 。
A.a<-4或a>0B.a≥0C.-4<a<0D.a>-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的圖象向左平移$\frac{π}{4}$個單位,得到的函數(shù)圖象的對稱中心與f(x)圖象的對稱中心重合,則ω的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{1(當(dāng)x是有理數(shù)時)}\\{0(當(dāng)x是無理數(shù)時)}\end{array}\right.$的定義域、值域、對應(yīng)關(guān)系分別是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若以不等式log${\;}_{\frac{1}{2}}$(x2-x-2)<log${\;}_{\frac{1}{2}}$(x-1)-1的解集為定義域,求函數(shù)y=4x-2x+1+5的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知A、B、C是球O的球面上三點,AB=2,BC=4,∠ABC=60°,且棱錐O-ABC的體積為$\frac{{4\sqrt{6}}}{3}$,則球O的表面積為48π.

查看答案和解析>>

同步練習(xí)冊答案