分析 (1)證明OC⊥OB,利用等體積法,求出O到平面ABC的距離;
(2)取CB的中點F,連接DF,EF,則DF∥AC,DE∥AO,從而可得平面DEF∥平面AOC.
解答 (1)證明:∵AO⊥底面BOC,
∴AO⊥OC,AO⊥OB.
∵∠OAB=∠OAC=30°,AB=AC=2,
∴OC=OB=1.
∵BC=$\sqrt{2}$,由勾股定理得OC⊥OB,
∵S△ABC=$\frac{1}{2}×\sqrt{2}×\sqrt{4-\frac{1}{2}}$=$\frac{\sqrt{7}}{2}$,
∴由等體積可得O到平面ABC的距離=$\frac{{S}_{△OBC}•OA}{{S}_{△ABC}}$=$\frac{\frac{1}{2}×1×1×\sqrt{3}}{\frac{\sqrt{7}}{2}}$=$\frac{\sqrt{21}}{7}$.
(2)存在CB的中點F滿足題意,
證明:取CB的中點F,連接DF,EF,則由于D,E分別為AB,OB的中點,有DF∥AC,DE∥AO,
∵DF∩DE=D,AC∩AO=A,DF,DE?平面DEF,AO,AC?平面AOC,
∴平面DEF∥平面AOC.
點評 本題主要考查了直線與平面垂直的判定,平面與平面平行的判定,考查了空間想象能力和推理論證能力,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-x2 | B. | $y=\frac{-1}{x}$ | C. | $y=x+\frac{1}{x}$ | D. | y=x|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com