17.求函數(shù)y=(x-1)(x-2)2在區(qū)間[0,3]上的最小值.

分析 求出函數(shù)的導(dǎo)數(shù),得到極值以及端點(diǎn)的函數(shù)值,然后求出最小值.

解答 解:函數(shù)y=(x-1)(x-2)2=(x-1)(x2-4x+4)=x3-4x2+4x-x2+4x-4=x3-5x2+8x-4.
y′=3x2-10x+8=0,解得x=2或x=$\frac{4}{3}$,
函數(shù)的極值點(diǎn)為:2,$\frac{4}{3}$.
又f(0)=-4,f($\frac{4}{3}$)=$\frac{4}{27}$,f(2)=0,f(3)=2.
可得函數(shù)y=(x-1)(x-2)2在區(qū)間[0,3]上的最小值為:-4.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知y=x2+4ax-2在區(qū)間(-∞,4]上為減函數(shù),則a的取值范圍是( 。
A.(-∞,-2]B.(-∞,2]C.[-2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,自點(diǎn)M(1,0)引直線交橢圓$\frac{{x}^{2}}{4}$+y2=1于A,B兩點(diǎn),直線l:x=4與x軸交于點(diǎn)N,設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為P(異于點(diǎn)B).
(1)求證:P、B、N三點(diǎn)共線;
(2)過點(diǎn)A作PB的平行線交直線l:x=4于點(diǎn)Q,記△AQM、△QMN、△BMN的面積分別為S1、S2、S3,是否存在常數(shù)λ,使得S22=λS1S3?若存在,請(qǐng)求出λ的值:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若x2+2(m-1)x+2m+6>0在x∈[0,2]上總成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.AB是圓O的直徑,點(diǎn)C,D在圓上,且AB=4,∠AOC=∠A0D=120°,點(diǎn)E,F(xiàn)分別在線段上,且$\overrightarrow{OE}$=λ$\overrightarrow{OC}$,$\overrightarrow{OF}$=2λ$\overrightarrow{OD}$,則$\overrightarrow{AE}$•$\overrightarrow{BF}$的最大值為( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{15}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-3x.
(1)計(jì)算:函數(shù)y=f(x)的零點(diǎn);
(2)證明:函數(shù)f(x)在[1,+∞)上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,AB=12,AC=5,BC=13,△ABC內(nèi)任意投一點(diǎn)P,則事件“△ABP的面積不小于6“的概率為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(α)=$\frac{sin(α-2π)cos(-α)tan(-α-2π)}{cos(2π-α)ta{n}^{2}(-α)}$.
(1)化簡(jiǎn)f(α);
(2)若cos(-α+2π)=$\frac{1}{5}$,求f(4π+a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等邊三角形ABC的邊長(zhǎng)為2,設(shè)$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案