6.已知函數(shù)f(x)=x4lnx-a(x4-1),a∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若當x≥1時,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)f(x)的極小值為φ(a),當a>0時,求證:$\frac{1}{4}({{e^{1-\frac{1}{4a}}}-{e^{4a-1}}})≤φ(a)<0$.(e=2.71828…為自然對數(shù)的底)

分析 (1)求出導函數(shù),利用導函數(shù)的概念求切線的斜率,點斜式寫出方程即可;
(2)f(x)≥0恒成立,只需求出f(x)的最小值大于等于零即可,求出導函數(shù),對參數(shù)a分類討論,討論是否滿足題意;
(3)根據(jù)導函數(shù)求出函數(shù)的極小值φ(a),對極小值進行求導,利用導函數(shù)得出極小值的最大值等于零,右右不等式得證,再利用構造函數(shù)的方法,通過導函數(shù)證明左式成立.

解答 解:(1)f'(x)=4x3lnx+x3-4ax3.…(1分)
則f'(1)=1-4a.又f(1)=0,
所以,曲線y=f(x)在點(1,f(1))處的切線方程為y=(1-4a)(x-1).…(3分)
(2)由(1)得f'(x)=x3(4lnx+1-4a).
①當$a≤\frac{1}{4}$時,因為y=4lnx+1-4a為增函數(shù),所以當x≥1時,4lnx+1-4a≥4ln1+1-4a=1-4a>0,
因此f'(x)≥0.
當且僅當$a=\frac{1}{4}$,且x=1時等號成立,
所以f(x)在(1,+∞)上為增函數(shù).
因此,當x≥1時,f(x)≥f(1)=0.
所以,$a≤\frac{1}{4}$滿足題意.…(6分)
②當$a>\frac{1}{4}$時,由f'(x)=x3(4lnx+1-4a)=0,得$lnx=a-\frac{1}{4}$,
解得$x={e^{a-\frac{1}{4}}}$.
因為$a>\frac{1}{4}$,所以$a-\frac{1}{4}>0$,所以${e^{a-\frac{1}{4}}}>{e^0}=1$.
當$x∈(1,\;{e^{a-\frac{1}{4}}})$時,f'(x)<0,因此f(x)在$(1,\;{e^{a-\frac{1}{4}}})$上為減函數(shù).
所以當$x∈(1,\;{e^{a-\frac{1}{4}}})$時,f(x)<f(1)=0,不合題意.
綜上所述,實數(shù)a的取值范圍是$(-∞,\frac{1}{4}]$.…(9分)
(3)由f'(x)=x3(4lnx+1-4a)=0,得$lnx=a-\frac{1}{4}$,$x={e^{a-\frac{1}{4}}}$.
當$x∈(0,\;{e^{a-\frac{1}{4}}})$時,f'(x)<0,f(x)為減函數(shù);當$x∈(\;{e^{a-\frac{1}{4}}},\;+∞)$時,f'(x)>0,f(x)為增函數(shù).
所以f(x)的極小值$φ(a)=f({e^{a-\frac{1}{4}}})$=$a-\frac{1}{4}{e^{4a-1}}$.…(10分)
由φ'(a)=1-e4a-1=0,得$a=\frac{1}{4}$.
當$a∈(0,\frac{1}{4})$時,φ'(a)>0,φ(a)為增函數(shù);當$a∈(\frac{1}{4},+∞)$時,φ'(a)<0,φ(a)為減函數(shù).
所以$φ(a)≤φ(\frac{1}{4})=0$.…(11分)
$φ(a)-\frac{1}{4}({e^{1-\;\frac{1}{4a}}}-{e^{4a-1}})$=$a-\frac{1}{4}{e^{4a-1}}-\frac{1}{4}({e^{1-\;\frac{1}{4a}}}-{e^{4a-1}})$=$a-\frac{1}{4}{e^{1-\;\frac{1}{4a}}}$.
下證:a>0時,$a-\frac{1}{4}{e^{1-\;\frac{1}{4a}}}≥0$.
$a-\frac{1}{4}{e^{1-\;\frac{1}{4a}}}≥0$,
∴$4a≥{e^{1-\;\frac{1}{4a}}}$,
∴$ln(4a)≥1-\;\frac{1}{4a}$,
∴$ln(4a)+\frac{1}{4a}-1≥\;0$.…(12分)
令$r(a)=ln(4a)+\frac{1}{4a}-1$,則$r'(a)=\frac{1}{a}-\frac{1}{{4{a^2}}}=\frac{4a-1}{{4{a^2}}}$.
當$a∈(0,\frac{1}{4})$時,r'(a)<0,r(a)為減函數(shù);當$a∈(\frac{1}{4},+∞)$時,r'(a)>0,r(a)為增函數(shù).所以$r(a)≥r(\frac{1}{4})=0$,即$ln(4a)+\frac{1}{4a}-1≥\;0$.
所以$a-\frac{1}{4}{e^{1-\;\frac{1}{4a}}}≥0$,即$φ(a)-\frac{1}{4}({e^{1-\;\frac{1}{4a}}}-{e^{4a-1}})≥0$.所以$φ(a)≥\frac{1}{4}({e^{1-\;\frac{1}{4a}}}-{e^{4a-1}})$.
綜上所述,要證的不等式成立.…(14分)

點評 考查了導函數(shù)的概念,恒成立問題的轉化,利用導函數(shù)判斷函數(shù)的最值,難點是對函數(shù)的構造,對導函數(shù)的分類討論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.由下面樣本數(shù)據(jù)利用最小二乘法求出的線性回歸方程是$\widehat{y}$=0.7x+m,則實數(shù)m=0.35.
x3456
y2.5344.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列判斷中錯誤的是( 。
A.若ξ~B(4,0.25),則Dξ=1
B.“am2<bm2”是“a<b”的充分不必要條件
C.若p、q均為假命題,則“p且q”為假命題
D.命題“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若方程|x2-4|x|-5|=m有6個互不相等的實根,則m的取值范圍為(5,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.將方程組寫成矩陣形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,已知:點E、F分別是正方形ABCD的邊AB、BC的中點,BD、DF分別交CE于點G、H,若正方形ABCD的面積是240,則四邊形BFHG的面積等于( 。
A.26B.28C.24D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某統(tǒng)計部門隨機抽查了3月1日這一天新世紀百貨童裝部100名顧客的購買情況,得到如圖數(shù)據(jù)統(tǒng)計表,已知購買金額在2000元以上(不含2000元)的頻率為0.4.
購買金額頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計1001.00
(1)確定x,y,p,q的值;
(2)為進一步了解童裝部的購買情況是否與顧客性別有關,對這100名顧客調查顯示:購物金額在2000元以上的顧客中女顧客有35人,購物金額在2000元以下(含2000元)的顧客中男顧客有20人;
①請將列聯(lián)表補充完整:
女顧客男顧客合計
購物金額在2000元以上35
購物金額在2000元以下20
合計100
②并據(jù)此列聯(lián)表,判斷是否有97.5%的把握認為童裝部的購買情況與顧客性別有關?
參考數(shù)據(jù):
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某班有25名男生、15名女生共40人,現(xiàn)對他們更愛好文娛還是更愛好體育進行調查,根據(jù)調查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(1)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表,并判斷能否在犯錯概率不超過0.10的前提下認為性別與是否更愛好體育有關系?
(2)若要從更愛好體育的學生中各隨機選2人,求所選2人中女生人數(shù)X的期望;
(3)若要從更愛好文娛和更愛好體育的學生中各選一人分別做文體活動協(xié)調人,求選出的兩人恰好是一男一女的概率;
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更愛好體育更愛好文娛 合計
 男生   
 女生   
 合計  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,△ABC中,C點在AB邊上的射影為D點.且CD2=AD•DB,求證,△ABC為直角三角形.

查看答案和解析>>

同步練習冊答案