【題目】給出下列4個(gè)結(jié)論:
①函數(shù)與函數(shù)的定義域相同,②函數(shù)(為常數(shù))圖像可由的圖像平移得到,③函數(shù)是奇函數(shù)且是偶函數(shù),④若冪函數(shù)是奇函數(shù),則是定義域上的增函數(shù),其中正確的結(jié)論的序號(hào)是_________(將所有正確結(jié)論的序號(hào)都填上)
【答案】①②③
【解析】
對(duì)①,分別求出定義域即可.對(duì)②根據(jù)圖像的平移性質(zhì)判斷.
對(duì)③,將中代換為,再分析兩式相加是否為0即可.
對(duì)④,舉出反例即可.
對(duì)①, 函數(shù)與函數(shù)的定義域均為,故①正確.
對(duì)②, 函數(shù)因?yàn)?/span>,故可以又成立,此時(shí).
故可由的圖像平移得到.故②正確.
對(duì)③, 定義域中關(guān)于原點(diǎn)對(duì)稱,設(shè),
則
故為奇函數(shù),又為奇函數(shù),故為偶函數(shù),故③正確.
對(duì)④, 冪函數(shù)是奇函數(shù),但在定義域上不是增函數(shù).故④錯(cuò)誤.
故答案為:①②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
職位 | A | B | C | D | 職位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若兩人分別去應(yīng)聘甲、乙兩家公司的C職位,記這兩人被甲、乙兩家公司的C職位錄用的人數(shù)和為,求的分布列;
(2)根據(jù)甲、乙兩家公司的聘用信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由。
(3)若小王和小李分別被甲、乙兩家公司錄用,求小王月薪高于小李的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn),且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)點(diǎn)是坐標(biāo)原點(diǎn),若直線與橢圓相切,過(guò)作,垂足為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為(為參數(shù),).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.
(1)若直線與圓有公共點(diǎn),試求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),過(guò)點(diǎn)且與直線平行的直線交圓于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】地震、海嘯、洪水、森林大火等自然災(zāi)害頻繁出現(xiàn),緊急避險(xiǎn)常識(shí)越來(lái)越引起人們的重視.某校為了了解學(xué)生對(duì)緊急避險(xiǎn)常識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行緊急避險(xiǎn)常識(shí)知識(shí)競(jìng)賽.圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按,分組,得到的頻率分布直方圖.
(Ⅰ)根據(jù)成績(jī)頻率分布直方圖分別估計(jì)參加這次知識(shí)競(jìng)賽的兩個(gè)年級(jí)學(xué)生的平均成績(jī);
(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“兩個(gè)年級(jí)學(xué)生對(duì)緊急避險(xiǎn)常識(shí)的了解有差異”?
成績(jī)小于60分人數(shù) | 成績(jī)不小于60分人數(shù) | 合計(jì) | |
高一年級(jí) | |||
高二年級(jí) | |||
合計(jì) |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)與溫度有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:
溫度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用線性回歸模型,求關(guān)于的回歸方程=x+(精確到0.1);
(2)若用非線性回歸模型求關(guān)的回歸方程為 且相關(guān)指數(shù)
( i )試與 (1)中的線性回歸模型相比,用 說(shuō)明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為,,相關(guān)指數(shù).
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓的焦距為,以橢圓C的右頂點(diǎn)A為圓心的圓與直線相交于P,Q兩點(diǎn),且.
(I)求橢圓C的標(biāo)準(zhǔn)方程和圓A的方程。
(II)不過(guò)原點(diǎn)的直線l與橢圓C交于M,N兩點(diǎn),已知直線OM,l,ON的斜率成等比數(shù)列,記以線段OM,線段ON為直徑的圓的面積分別為的值是否為定值?若是,求出此值:若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠家擬舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元()滿足(為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件.已知年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將該產(chǎn)品的年利潤(rùn)萬(wàn)元表示為年促銷費(fèi)用萬(wàn)元的函數(shù);
(2)該廠家年促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com