分析 (1)方程f(x)=$\sqrt{3}$化為$sin2x=\sqrt{3}cos2x$,可得$sin(2x-\frac{π}{3})$=0,x∈(0,+∞),于是2x-$\frac{π}{3}$=kπ,解得即可得出;
(2)bn=$(\frac{1}{2n-1}-\frac{1}{2n+1})π$,利用“裂項(xiàng)求和”即可得出.
解答 解:(1)方程f(x)=$\sqrt{3}$化為$sin2x=\sqrt{3}cos2x$,∴$sin(2x-\frac{π}{3})$=0,x∈(0,+∞),
∴2x-$\frac{π}{3}$=kπ,解得x=$\frac{kπ}{2}+\frac{π}{6}$,k∈Z.
∴an=$\frac{3n-2}{6}π$.(n∈N*).
(2)bn=$\frac{3{a}_{n}}{(4{n}^{2}-1)(3n-2)}$=$\frac{π}{2(4{n}^{2}-1)}$=$(\frac{1}{2n-1}-\frac{1}{2n+1})π$,
∴Sn=π$[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$(1-\frac{1}{2n+1})π$
=$\frac{2nπ}{2n+1}$.
點(diǎn)評 本題考查了兩角和差公式、數(shù)列“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com