16.已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為$\frac{\sqrt{3}}{2}$,E的右焦點(diǎn)與拋物線C:y=12x2的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個交點(diǎn),則|AB|=$\sqrt{3}$.

分析 利用橢圓的離心率以及拋物線的焦點(diǎn)坐標(biāo),求出橢圓的半長軸,然后求解拋物線的準(zhǔn)線方程,求出A,B坐標(biāo),即可求解所求結(jié)果.

解答 解:橢圓E的中心在坐標(biāo)原點(diǎn),離心率為$\frac{\sqrt{3}}{2}$,E的右焦點(diǎn)(c,0)與拋物線C:y2=12x的焦點(diǎn)(3,0)重合,
可得c=3,a=2$\sqrt{3}$,b2=3,橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}$=1,
拋物線的準(zhǔn)線方程為:x=-3,
代入橢圓方程,解得y=±$\frac{\sqrt{3}}{2}$,所以A(-3,$\frac{\sqrt{3}}{2}$),B(-3,-$\frac{\sqrt{3}}{2}$).
∴|AB|=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評 本題考查拋物線以及橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在兩個變量y與x的回歸模型中,分別選擇了4個不同的模型,它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是( 。
A.模型1的相關(guān)指數(shù)R2為0.25B.模型2的相關(guān)指數(shù)R2為0.87
C.模型3的相關(guān)指數(shù)R2為0.50D.模型4的相關(guān)指數(shù)R2為0.97

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.P是橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一點(diǎn),F(xiàn)1、F2分別是左右焦點(diǎn),若|PF1|=3|PF2|,則過點(diǎn)P的橢圓的切線的斜率是(  )
A.$±\sqrt{2}$B.$±\frac{{\sqrt{2}}}{3}$C.$±\frac{{\sqrt{2}}}{4}$D.$±\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若3a+4b=ab,a>0且b>0,則a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知拋物線y2=4px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是偶函數(shù)又是(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A.$y=\frac{1}{x}$B.y=x3C.y=|x|D.$y={(\frac{{\sqrt{2}}}{2})^{|x|}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在長方體ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=3,點(diǎn)M在A1C1上,|MC1|=2|A1M|,N在D1C上且為D1C的中點(diǎn),求M,N兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,甲、乙兩樓相距20米,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則乙樓的高是(  )
A.$\frac{40\sqrt{3}}{3}$B.20$\sqrt{3}$C.40D.10$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a∈Z,且0≤a<13,若512015+a能被13整除,則a=( 。
A.0B.1C.11D.12

查看答案和解析>>

同步練習(xí)冊答案