8.求函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+x-2)的單調遞增區(qū)間.

分析 由已知中函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+x-2)的解析式,先確定函數(shù)的定義域,進而根據(jù)二次函數(shù)和對數(shù)函數(shù)的性質,分別判斷內,外函數(shù)的單調性,進而根據(jù)復合函數(shù)“同增異減”的原則,得到答案.

解答 解:由題意,x2+x-2>0,∴x<-2或x>1,
函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+x-2)的定義域為(-∞,-2)∪(1,+∞)
令t=x2+x-2,則y=log${\;}_{\frac{1}{2}}$t
∵y=log${\;}_{\frac{1}{2}}$t為減函數(shù)
t=x2+x-2的單調遞減區(qū)間是(-∞,-$\frac{1}{2}$),單調遞增區(qū)間是(-$\frac{1}{2}$,+∞)
故函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+x-2)的單調遞增區(qū)間是(-∞,-2).

點評 本題考查的知識點是二次函數(shù)的圖象和性質,對數(shù)函數(shù)的單調區(qū)間,復合函數(shù)的單調性,其中復合函數(shù)單調性“同增異減”的原則,是解答本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,點A,B分別在射線l1:y=2x(x≥0),l2:y=-2x(x≥0)上運動,且S△AOB=4.
(1)求x1•x2;
(2)求線段AB的中點M的軌跡方程;
(3)判定中點M到兩射線的距離積是否是為定值,若是則找出該值并證明;若不是定值說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=(x-a-1)ex
(Ⅰ)若函數(shù)的最小值為-1,求實數(shù)a的值;
(Ⅱ)若x1>x2,且有x1+x2=2a,求證:f(x1)>f(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.用總長為10.8m的鋼條制作一個長方體容器的框架,如果所制容器底面一邊的長是另一邊的長的2倍,那么高為多少時容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知與定點O(0,0),A(0,3)的距離比為$\frac{1}{2}$的點P的軌跡為曲線C,過點B(0,2)的直線l與曲線C交于M,N兩點.
(1)求曲線C的軌跡方程;
(2)判斷$\overrightarrow{BM}$•$\overrightarrow{BN}$是否為定值?若是求出這個定值,若不是請說明理由;
(3)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C對邊分別為a,b,c,且btanA,ctanB,btanB成等差數(shù)列.
(1)求角A;
(2)若a=2,試判斷當bc取最大值時△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若n=${∫}_{0}^{2}$2xdx,則(x-$\frac{1}{2x}$)n的展開式中常數(shù)項為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.近幾年騎車鍛煉越來越受到人們的喜愛,男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進行社會實踐,將被調查人員分為“喜歡騎車”和“不喜歡騎車”,得到如表統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組喜歡騎車鍛煉的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(1)補全頻率分布直方圖,并n,a,p的值;
(2)從[40,50)歲年齡段的“喜歡騎車”中采用分層抽樣法抽取18人參加騎車鍛煉體驗活動,其中選取3人作為領隊,記選取的3名領隊中年齡在[40,50)歲的人數(shù)為X,求X的分布列和期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)在點(1,0)處的切線;
(2)若g(x)=-x2+ax-3,且不等式g(x)-2f(x)≤0對一切x>0恒成立,求實數(shù)a的取值范圍;
(3)當x∈(0,+∞)時,求證:exlnx+$\frac{2{e}^{x-1}}{x}$>1.

查看答案和解析>>

同步練習冊答案